Nothing
#' @importFrom rlang .data
#' @export
#'
#' @title Convert NWS Public Forecast Zones Shapefile.
#'
#' @description Create a simple features data frame for NWS weather forecast zones.
#'
#' The full resolution file will be named "WeatherZones.rda". In addition,
#' "_05", _02" and "_01" versions of the file will be created that that are
#' simplified to 5\%, 2\% and 1\%. Simplified versions will greatly improve the
#' speed of both searching and plotting.
#'
#' @details A weather forecast zone shapefile is downloaded and converted to a
#' simple features data frame with additional columns of data. The resulting file
#' will be created in the spatial data directory which is set with
#' \code{setSpatialDataDir()}.
#'
#' The source data is from 2022-09-13.
#'
#' @note Records with a duplicated \code{zoneID} column (typically representing
#' coastal land and its watery inlets separately) are combined so that \code{zoneID}
#' becomes a unique identifier.
#'
#' @note From the source documentation:
#'
#' The NWS issues forecasts and some watches and warnings for public zones which
#' usually are the same as counties but in many cases are subsets of counties.
#' Counties are subset into zones to allow for more accurate forecasts because
#' of the differences in weather within a county due to such things as elevation
#' or proximity to large bodies of water.
#'
#' @return Name of the datasetName being created.
#'
#' @references \url{https://www.weather.gov/gis/PublicZones}
#'
convertWeatherZones <- function() {
# ----- Setup ----------------------------------------------------------------
# Use package internal data directory
dataDir <- getSpatialDataDir()
# Specify the name of the dataset and file being created
datasetName <- 'WeatherZones'
# ----- Get the data ---------------------------------------------------------
# Build appropriate request URL
url <- "https://www.weather.gov/source/gis/Shapefiles/WSOM/z_13se22.zip"
filePath <- file.path(dataDir, basename(url))
utils::download.file(url, filePath)
# NOTE: This zip file has no directory so extra subdirectory needs to be created
utils::unzip(filePath, exdir = file.path(dataDir, 'WeatherZones'))
# ----- Convert to SFDF ------------------------------------------------------
# Convert shapefile into simple features data frame
# NOTE: The 'WeatherZones' directory has been created
dsnPath <- file.path(dataDir, 'WeatherZones')
shpName <- 'z_13se22'
SFDF <- convertLayer(
dsn = dsnPath,
layer = shpName
)
# ----- Select useful columns and rename -------------------------------------
# > dplyr::glimpse(SFDF, width = 75)
# Rows: 3,996
# Columns: 11
# $ STATE <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", …
# $ CWA <chr> "BMX", "MOB", "BMX", "BMX", "BMX", "BMX", "HUN", "BMX"…
# $ TIME_ZONE <chr> "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",…
# $ FE_AREA <chr> "ec", "sc", "se", "cc", "cc", "se", "ne", "ne", "cc", …
# $ ZONE <chr> "019", "057", "046", "017", "034", "050", "009", "020"…
# $ NAME <chr> "Calhoun", "Butler", "Bullock", "Blount", "Bibb", "Bar…
# $ STATE_ZONE <chr> "AL019", "AL057", "AL046", "AL017", "AL034", "AL050", …
# $ LON <dbl> -85.8261, -86.6803, -85.7161, -86.5674, -87.1264, -85.…
# $ LAT <dbl> 33.7714, 31.7524, 32.1005, 33.9809, 32.9986, 31.8696, …
# $ SHORTNAME <chr> "Calhoun", "Butler", "Bullock", "Blount", "Bibb", "Bar…
# $ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-85.5301 33..., MULTIPOLY…
# Data Dictionary:
# STATE -------> stateCode: 2-character postal code
# CWA ---------> weatherForecastOffice: CWA abbreviation for office
# TIME_ZONE ---> (drop)
# FE_AREA -----> (drop)
# ZONE --------> zoneNumber: zone number
# NAME --------> name: zone name
# STATE_ZONE --> zoneID: unqiue identifier
# LON ---------> longitude: longitude of zone centroid
# LAT ---------> latitude: latitude of zone centroid
# SHORTNAME ---> (drop)
SFDF$countryCode <- "US"
SFDF <-
SFDF %>%
dplyr::select(
countryCode = .data$countryCode,
stateCode = .data$STATE,
weatherForecastOffice = .data$CWA,
zoneNumber = .data$ZONE,
zoneName = .data$NAME,
zoneID = .data$STATE_ZONE,
longitude = .data$LON,
latitude = .data$LAT
)
# ----- Combine polygons -----------------------------------------------------
# NOTE: Some zoneIDs are duplicated, e.g. "MD018" which is used for the land
# NOTE: part of a peninsula in Maryland as well as the water inlets. Presumablyl
# NOTE: This is so the NWS can issue separate land and maritime forecasts for
# NOTE: users.
# NOTE:
# NOTE: We combine them here.
copy_fields <- setdiff(names(SFDF), c("geometry"))
SFDF <-
SFDF %>%
MazamaSpatialUtils::dissolve(
"zoneID",
copy_fields = copy_fields
)
# ----- Simplify and save ----------------------------------------------------
uniqueIdentifier <- "zoneID"
simplifyAndSave(
SFDF = SFDF,
datasetName = datasetName,
uniqueIdentifier = uniqueIdentifier,
dataDir = dataDir
)
# ----- Clean up and return --------------------------------------------------
# Clean up
unlink(filePath, force = TRUE)
unlink(dsnPath, recursive = TRUE, force = TRUE)
return(invisible(datasetName))
}
# ===== TEST ===================================================================
if ( FALSE ) {
library(sf)
# Look or horizontal lines from polygons that cross the dateline.
# NOTE: These are sometimes created by sf::st_make_valid()
loadSpatialData(datasetName)
SFDF <- get(paste0(datasetName, ""))
SFDF_05 <- get(paste0(datasetName, "_05"))
SFDF_02 <- get(paste0(datasetName, "_02"))
SFDF_01 <- get(paste0(datasetName, "_01"))
plot(SFDF_01$geometry)
dev.off(dev.list()["RStudioGD"])
plot(SFDF_02$geometry)
dev.off(dev.list()["RStudioGD"])
plot(SFDF_05$geometry)
dev.off(dev.list()["RStudioGD"])
#plot(SFDF$geometry)
# Try out getSpatialData()
lons <- c(-120:-110, 0:10)
lats <- c(30:40, 30:40)
df <- getSpatialData(lons, lats, SFDF_01)
df <- getSpatialData(lons, lats, SFDF_02)
df <- getSpatialData(lons, lats, SFDF_05)
df <- getSpatialData(lons, lats, SFDF)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.