R/spde_precision.R

Defines functions Qalpha1_v2 Qalpha2 Q00 Qalpha1 Qalpha1_edges spde_precision

Documented in spde_precision

#' Precision matrix for Whittle-Matérn fields
#'
#' Computes the precision matrix for all vertices for a Whittle-Matérn field.
#'
#' @param kappa Range parameter.
#' @param tau Precision parameter.
#' @param alpha Smoothness parameter (1 or 2).
#' @param graph A `metric_graph` object.
#' @param BC Set boundary conditions for degree=1 vertices. BC =0 gives Neumann
#' boundary conditions and BC=1 gives stationary boundary conditions.
#' @param build If `TRUE`, the precision matrix is returned. Otherwise a list
#' list(i,j,x, nv) is returned.
#' @return Precision matrix or list.
#' @export
spde_precision <- function(kappa, tau, alpha, graph, BC = 1, build = TRUE) {

  check <- check_graph(graph)

  if (alpha == 1) {
    return(Qalpha1(theta = c(tau, kappa),
                   graph = graph,
                   BC = BC,
                   build = build))
  } else if (alpha == 2) {
      return(Qalpha2(theta = c(tau, kappa),
                     graph = graph,
                     BC = BC,
                     build = build))
  }
}

#' The precision matrix for all edges in the alpha=1 case assumes
#' that the edges are not connected
#' @param theta - tau, kappa
#' @param graph metric_graph object
#' @param w ([0,1]) how two weight the top edge
#' @param build (bool) if TRUE return the precision matrix otherwise return
#' a list(i,j,x, nv)
#' @param BC boundary conditions for degree=1 vertices. BC =0 gives Neumann
#' boundary conditions and BC=1 ....
#' @param stationary_points The indices of the endpoints (inward degree zero) to have stationary boundary conditions.
#' @return Precision matrix or list
#' @noRd
Qalpha1_edges <- function(theta, graph, w, BC = 0, stationary_points = "all", build = TRUE) {

  kappa <- theta[2]
  tau <- theta[1]
  i_ <- j_ <- x_ <- rep(0, graph$nE*4)
  count <- 0
  for(i in 1:graph$nE){
    l_e <- graph$edge_lengths[i]
    c1 <- exp(-kappa*l_e)
    c2 <- c1^2
    one_m_c2 = 1-c2
    c_1_upper = w + c2/one_m_c2
    c_1_lower = (1-w) + c2/one_m_c2
    c_2 = -c1/one_m_c2

       #u upper
      i_[count + 1] <- 2 * ( i - 1) + 1
      j_[count + 1] <- 2 * ( i - 1) + 1
      x_[count + 1] <- c_1_upper

      #u lower
      i_[count + 2] <- 2 * ( i - 1) + 2
      j_[count + 2] <- 2 * ( i - 1) + 2
      x_[count + 2] <- c_1_lower


      i_[count + 3] <- 2 * ( i - 1) + 1
      j_[count + 3] <- 2 * ( i - 1) + 2
      x_[count + 3] <- c_2

      i_[count + 4] <- 2 * ( i - 1) + 2
      j_[count + 4] <- 2 * ( i - 1) + 1
      x_[count + 4] <- c_2
      count <- count + 4
  }

  if(is.character(stationary_points)){
    stationary_points <- stationary_points[[1]]
    if(!(stationary_points %in% c("all", "none"))){
      stop("If stationary_points is a string, it must be either 'all' or 'none', otherwise it must be a numeric vector.")
    }
    stat_indices <- which(graph$get_degrees("indegree")==0)
  } else{
    stat_indices <- stationary_points
    if(!is.numeric(stat_indices)){
      stop("stationary_points must be either numeric or a string.")
    }
  }
  if(stationary_points == "none"){
    BC <- 0
  } else{
    BC <- 1
  }
  if(BC> 0){
    empty.in <- which(graph$get_degrees("indegree")==0)
    if(any(!(stat_indices%in%empty.in))){
      stop("stationary_points should only contain vertices with inward degree zero!")
    }


    for (v in stat_indices) {
      edge <- which(graph$E[,1]==v)[1] #only put stationary of one of indices
      ind <- 2 * ( edge - 1) + 1
      i_ <- c(i_, ind)
      j_ <- c(j_, ind)
      x_ <- c(x_, 1-w)
      count <- count + 1
    }
  }
  if(build){
    Q <- Matrix::sparseMatrix(i = i_[1:count],
                              j = j_[1:count],
                              x = (2 * kappa * tau^2) * x_[1:count],
                              dims = c(2*graph$nE, 2*graph$nE))


    return(Q)
  } else {
    return(list(i = i_[1:count],
                j = j_[1:count],
                x = (2 * kappa * tau^2) * x_[1:count],
                dims = c(2*graph$nE, 2*graph$nE)))
  }
}


#' The precision matrix for all vertices in the alpha=1 case
#' @param theta - tau, kappa
#' @param graph metric_graph object
#' @param BC boundary conditions for degree=1 vertices. BC =0 gives Neumann
#' boundary conditions and BC=1 gives stationary boundary conditions
#' @param build (bool) if TRUE return the precision matrix otherwise return
#' a list(i,j,x, nv)
#' @return Precision matrix or list
#' @noRd
Qalpha1 <- function(theta, graph, BC = 1, build = TRUE) {

  kappa <- theta[2]
  tau <- theta[1]
  i_ <- j_ <- x_ <- rep(0, dim(graph$V)[1]*4)
  count <- 0
  for(i in 1:graph$nE){
    l_e <- graph$edge_lengths[i]
    c1 <- exp(-kappa*l_e)
    c2 <- c1^2
    one_m_c2 = 1-c2
    c_1 = 0.5 + c2/one_m_c2
    c_2 = -c1/one_m_c2

    if (graph$E[i, 1] != graph$E[i, 2]) {

      i_[count + 1] <- graph$E[i, 1]
      j_[count + 1] <- graph$E[i, 1]
      x_[count + 1] <- c_1

      i_[count + 2] <- graph$E[i, 2]
      j_[count + 2] <- graph$E[i, 2]
      x_[count + 2] <- c_1


      i_[count + 3] <- graph$E[i, 1]
      j_[count + 3] <- graph$E[i, 2]
      x_[count + 3] <- c_2

      i_[count + 4] <- graph$E[i, 2]
      j_[count + 4] <- graph$E[i, 1]
      x_[count + 4] <- c_2
      count <- count + 4
    }else{
      i_[count + 1] <- graph$E[i, 1]
      j_[count + 1] <- graph$E[i, 1]
      x_[count + 1] <- tanh(0.5 * kappa * l_e)
      count <- count + 1
    }
  }
  if(BC == 1){
    #does this work for circle?
    i.table <- table(i_[1:count])
    index = as.integer(names(which(i.table < 3)))
    i_ <- c(i_[1:count], index)
    j_ <- c(j_[1:count], index)
    x_ <- c(x_[1:count], rep(0.5, length(index)))
    count <- count + length(index)
  }
  if(build){
    Q <- Matrix::sparseMatrix(i = i_[1:count],
                              j = j_[1:count],
                              x = (2 * kappa * tau^2) * x_[1:count],
                              dims = c(graph$nV, graph$nV))


    return(Q)
  } else {
    return(list(i = i_[1:count],
                j = j_[1:count],
                x = (2 * kappa * tau^2) * x_[1:count],
                dims = c(graph$nV, graph$nV)))
  }
}


#' @noRd
Q00 <- function(l,kappa,tau) {
  kl <- kappa*l

  Q <- matrix(0,4,4)

  c1 <-  2*kappa*kl

  Q[1,1] <- Q[3,3] <- c1*kappa + kappa^2 * sinh(2*kl)
  Q[1,2] <- Q[2,1] <- c1*kl
  Q[3,4] <- Q[4,3] <- -c1*kl
  Q[1,3] <- Q[3,1] <- -(2*kappa^2*sinh (kl) + c1*kappa*cosh (kl))
  Q[1,4] <- Q[4,1] <- c1 * sinh (kl)
  Q[2,3] <- Q[3,2] <- -c1* sinh (kl)
  Q[2,2] <- Q[4,4] <- sinh(2*kl) - 2*kl
  Q[2,4] <- Q[4,2] <- -2*(sinh (kl)-kl*cosh (kl))

  C <- 2*kappa*tau^2/(-2*kl^2 + cosh(2*kl)-1)

  return(C*Q)

}
#' The precision matrix for all vertices in the alpha=2 case
#' @param theta - tau, kappa
#' @param graph metric_graph object
#' @param w ([0,1]) how two weight the top edge
#' @param BC boundary conditions for degree=1 vertices. BC =0 gives Neumann
#' boundary conditions and BC=1 gives stationary boundary conditions
#' @param build (bool) if TRUE return the precision matrix otherwise return
#' a list(i,j,x, nv)
#' @details This is the unconstrained precision matrix of the process and its
#' derivatives. The ordering of the variables is acording to graph$E, where for
#' each edge there are four random variables: processes and derivate for
#' lower and upper edge end points
#' @return Precision matrix or list
#' @noRd
Qalpha2 <- function(theta, graph, w = 0.5, BC = 1, build = TRUE, stationary_points = NULL) {

  kappa <- theta[2]
  tau <- theta[1]

  i_ <- j_ <- x_ <- rep(0, graph$nE * 16)
  count <- 0

  #R_00 <- matrix(c( r_2(0, kappa = kappa, tau = tau, deriv = 0),
  #                 -r_2(0, kappa = kappa, tau = tau, deriv = 1),
  #                 -r_2(0, kappa = kappa, tau = tau, deriv = 1),
  #                 -r_2(0, kappa = kappa, tau = tau, deriv = 2)), 2, 2)
  #R_node <- rbind(cbind(R_00, matrix(0, 2, 2)),
  #                cbind(matrix(0, 2, 2), R_00))
  #R00i <- solve(R_00)
  #Ajd <- -1 * rbind(cbind(w * R00i, matrix(0, 2, 2)),
  #                    cbind(matrix(0, 2, 2), (1-w)*R00i))
  for (i in 1:graph$nE) {

    l_e <- graph$edge_lengths[i]
    #lots of redundant caculations
    # d_ <- c(0, l_e)
    # D <- outer(d_, d_, "-")
    #r_0l <-   r_2(l_e, kappa = kappa, tau = tau, deriv = 0)
    #r_11 <- - r_2(l_e, kappa = kappa, tau = tau, deriv = 2)
    # order by node not derivative
    #R_01 <- matrix(c(r_0l, r_2(-l_e, kappa = kappa, tau = tau, deriv = 1),
    #                 r_2(l_e, kappa = kappa, tau = tau, deriv = 1), r_11), 2, 2)

    #R_node[1:2, 3:4] <- R_01
    #R_node[3:4, 1:2] <- t(R_01)

    #Q_adj <- solve(R_node) + Ajd
    Q_adj <- Q00(l_e,kappa,tau)



    if (graph$E[i, 1] == graph$E[i, 2]) {
      warning("Circular edges are not implemented")
    }

      #lower edge precision u
      i_[count + 1] <- 4 * (i - 1) + 1
      j_[count + 1] <- 4 * (i - 1) + 1
      x_[count + 1] <- Q_adj[1, 1]

      #lower edge  u'
      i_[count + 2] <- 4 * (i - 1) + 2
      j_[count + 2] <- 4 * (i - 1) + 2
      x_[count + 2] <- Q_adj[2, 2]

      #upper edge  u
      i_[count + 3] <- 4 * (i - 1) + 3
      j_[count + 3] <- 4 * (i - 1) + 3
      x_[count + 3] <- Q_adj[3, 3]

      #upper edge  u'
      i_[count + 4] <- 4 * (i - 1) + 4
      j_[count + 4] <- 4 * (i - 1) + 4
      x_[count + 4] <- Q_adj[4, 4]

      #lower edge  u, u'
      i_[count + 5] <- 4 * (i - 1) + 1
      j_[count + 5] <- 4 * (i - 1) + 2
      x_[count + 5] <- Q_adj[1, 2]
      i_[count + 6] <- 4 * (i - 1) + 2
      j_[count + 6] <- 4 * (i - 1) + 1
      x_[count + 6] <- Q_adj[1, 2]

      #upper edge  u, u'
      i_[count + 7] <- 4 * (i - 1) + 3
      j_[count + 7] <- 4 * (i - 1) + 4
      x_[count + 7] <- Q_adj[3, 4]
      i_[count + 8] <- 4 * (i - 1) + 4
      j_[count + 8] <- 4 * (i - 1) + 3
      x_[count + 8] <- Q_adj[3, 4]

      #lower edge  u, upper edge  u,
      i_[count + 9]  <- 4 * (i - 1) + 1
      j_[count + 9]  <- 4 * (i - 1) + 3
      x_[count + 9]  <- Q_adj[1, 3]
      i_[count + 10] <- 4 * (i - 1) + 3
      j_[count + 10] <- 4 * (i - 1) + 1
      x_[count + 10] <- Q_adj[1, 3]

      #lower edge  u, upper edge  u',
      i_[count + 11] <- 4 * (i - 1) + 1
      j_[count + 11] <- 4 * (i - 1) + 4
      x_[count + 11] <- Q_adj[1, 4]
      i_[count + 12] <- 4 * (i - 1) + 4
      j_[count + 12] <- 4 * (i - 1) + 1
      x_[count + 12] <- Q_adj[1, 4]

      #lower edge  u', upper edge  u,
      i_[count + 13] <- 4 * (i - 1) + 2
      j_[count + 13] <- 4 * (i - 1) + 3
      x_[count + 13] <- Q_adj[2, 3]
      i_[count + 14] <- 4 * (i - 1) + 3
      j_[count + 14] <- 4 * (i - 1) + 2
      x_[count + 14] <- Q_adj[2, 3]

      #lower edge  u', upper edge  u',
      i_[count + 15] <- 4 * (i - 1) + 2
      j_[count + 15] <- 4 * (i - 1) + 4
      x_[count + 15] <- Q_adj[2, 4]
      i_[count + 16] <- 4 * (i - 1) + 4
      j_[count + 16] <- 4 * (i - 1) + 2
      x_[count + 16] <- Q_adj[2, 4]

      count <- count + 16

  }

  if(is.null(stationary_points)){
    R_00 <- matrix(c( r_2(0, kappa = kappa, tau = tau, deriv = 0),
                     -r_2(0, kappa = kappa, tau = tau, deriv = 1),
                     -r_2(0, kappa = kappa, tau = tau, deriv = 1),
                     -r_2(0, kappa = kappa, tau = tau, deriv = 2)), 2, 2)
      if(BC> 0){
        #Vertices with of degree 1
        i.table <- table(c(graph$E))
        index <- as.integer(names(which(i.table == 1)))
        #for this vertices locate position


        if(BC==1 || BC==2){
          lower.edges <- which(graph$E[, 1] %in% index)
          for (le in lower.edges) {
            ind <- c(4 * (le - 1) + 1, 4 * (le - 1) + 2)

            i_ <- c(i_, ind)
            j_ <- c(j_, ind)
            x_ <- c(x_, w*c(1 / R_00[1, 1], 1 / R_00[2, 2]))
            count <- count + 2
          }
        }
        if(BC==1 || BC==3){
          upper.edges <- which(graph$E[, 2] %in% index)
          for (ue in upper.edges) {
            ind <- c(4 * (ue - 1) + 3, 4 * (ue - 1) + 4)
            i_ <- c(i_, ind)
            j_ <- c(j_, ind)
            x_ <- c(x_, (1-w) * c(1 / R_00[1, 1], 1 / R_00[2, 2]))
            count <- count + 2
          }
        }
      }
  } else{
    R_00 <- matrix(c( r_2(0, kappa = kappa, tau = tau, deriv = 0),
                      -r_2(0, kappa = kappa, tau = tau, deriv = 1),
                      -r_2(0, kappa = kappa, tau = tau, deriv = 1),
                      -r_2(0, kappa = kappa, tau = tau, deriv = 2)), 2, 2)
    index <- stationary_points
    lower.edges <- which(graph$E[, 1] %in% index)
          for (le in lower.edges) {
            ind <- c(4 * (le - 1) + 1, 4 * (le - 1) + 2)

            i_ <- c(i_, ind)
            j_ <- c(j_, ind)
            x_ <- c(x_, w*c(1 / R_00[1, 1], 1 / R_00[2, 2]))
            count <- count + 2
          }

          upper.edges <- which(graph$E[, 2] %in% index)
          for (ue in upper.edges) {
            ind <- c(4 * (ue - 1) + 3, 4 * (ue - 1) + 4)
            i_ <- c(i_, ind)
            j_ <- c(j_, ind)
            x_ <- c(x_, (1-w) * c(1 / R_00[1, 1], 1 / R_00[2, 2]))
            count <- count + 2
          }
  }
  if (build) {
    Q <- Matrix::sparseMatrix(i    = i_[1:count],
                              j    = j_[1:count],
                              x    = x_[1:count],
                              dims = c(4 * graph$nE, 4 * graph$nE))

    return(Q)
  }else{
    return(list(i = i_[1:count],
                j = j_[1:count],
                x  = x_[1:count],
                dims=c(4 * graph$nE, 4 * graph$nE)))
  }
}


#' The precision matrix for all vertices in the alpha=1 case
#' @param theta - tau, kappa
#' @param graph metric_graph object
#' @param BC boundary conditions for degree=1 vertices. BC =0 gives Neumann
#' boundary conditions and BC=1 gives stationary boundary conditions
#' BC=2 stationary boundary conditions only on Outwards vertices
#' BC=3 stationary boundary conditions only on Outwards inwards
#' @param w ([0,1]) how to weight the top edge
#' @param build (bool) if TRUE return the precision matrix otherwise return
#' a list(i,j,x, nv)
#' @return Precision matrix or list
#' @noRd
Qalpha1_v2 <- function(theta, graph, w = 0.5 ,BC = 0, build = TRUE) {

  kappa <- theta[2]
  tau <- theta[1]
  i_ <- j_ <- x_ <- rep(0, dim(graph$V)[1]*4)
  count <- 0
  for(i in 1:graph$nE){
    l_e <- graph$edge_lengths[i]
    c1 <- exp(-kappa*l_e)
    c2 <- c1^2
    one_m_c2 = 1-c2
    c_1_upper = w + c2/one_m_c2
    c_1_lower = (1-w) + c2/one_m_c2
    c_2 = -c1/one_m_c2

    if (graph$E[i, 1] != graph$E[i, 2]) {

      i_[count + 1] <- graph$E[i, 1]
      j_[count + 1] <- graph$E[i, 1]
      x_[count + 1] <- c_1_upper

      i_[count + 2] <- graph$E[i, 2]
      j_[count + 2] <- graph$E[i, 2]
      x_[count + 2] <- c_1_lower


      i_[count + 3] <- graph$E[i, 1]
      j_[count + 3] <- graph$E[i, 2]
      x_[count + 3] <- c_2

      i_[count + 4] <- graph$E[i, 2]
      j_[count + 4] <- graph$E[i, 1]
      x_[count + 4] <- c_2
      count <- count + 4
    }else{
      i_[count + 1] <- graph$E[i, 1]
      j_[count + 1] <- graph$E[i, 1]
      x_[count + 1] <- tanh(0.5 * kappa * l_e)
      count <- count + 1
    }
  }

  if(BC>0){
    BC_all <- graph$get_degrees()
    if(BC==1 || BC==2){
      BC_in <- graph$get_degrees("indegree")==1 & BC_all==1
      if(length(BC_in)>0){
        BC_in <- which(BC_in)
        i_ <- c(i_[1:count], BC_in)
        j_ <- c(j_[1:count], BC_in)
        x_ <- c(x_[1:count], rep(w, length(BC_in)))
        count <- count + length(BC_in)
      }
    }
    if(BC==1 || BC==3){
      BC_out <- graph$get_degrees("outdegree")==1 & BC_all==1
      if(length(BC_out)>0){
        BC_out <- which(BC_out)
        i_ <- c(i_[1:count], BC_out)
        j_ <- c(j_[1:count], BC_out)
        x_ <- c(x_[1:count], rep(1-w, length(BC_out)))
        count <- count + length(BC_out)
      }
    }
  }
  if(build){
    Q <- Matrix::sparseMatrix(i = i_[1:count],
                              j = j_[1:count],
                              x = (2 * kappa * tau^2) * x_[1:count],
                              dims = c(graph$nV, graph$nV))


    return(Q)
  } else {
    return(list(i = i_[1:count],
                j = j_[1:count],
                x = (2 * kappa * tau^2) * x_[1:count],
                dims = c(graph$nV, graph$nV)))
  }
}

Try the MetricGraph package in your browser

Any scripts or data that you put into this service are public.

MetricGraph documentation built on April 3, 2025, 10:34 p.m.