Nothing
#'@title Function to perform multiplier bootstrap for tests of randomness or independence
#'
#'@description This function simulates Cramer-von Mises statistics using Gaussian multipliers.
#'
#'@param M n x n x m vector with MM[i,j] = 1(Xi <= Xj) and C=mean(M[,j]);
#'@param n length of the series.
#'@param J n x n vector for bootstrapping Sn.
#
#'
#'
#'@return \item{cvm_sim}{Simulated value of the Cramer-von Mises statistics}
#'@return \item{sn_sim}{simulated value of the Cramer-von Mises statistic Sn}
#'
#'@references B.R Nasri (2021). Tests of serial dependence for arbitrary distributions
#'
#'
#'@keywords internal
#'
#'@export
#'
#'
bootstrap = function(M,J,n){
cA = length(M)/n/n
xi = rnorm(n)
out0 = .C("statsim",
as.double(M),
as.double(J),
as.double(xi),
as.integer(n),
as.integer(cA),
stats=double(cA),
sn = double(1),
PACKAGE = "MixedIndTests"
)
out = list(cvm=out0$stats,Sn = out0$sn)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.