View source: R/mult-KMEDOIDS.R
KMEDOIDS | R Documentation |
A basic implementation of kmedoids on top of cluster::pam Beware that morphospaces are calculated so far for the 1st and 2nd component.
KMEDOIDS(x, k, metric = "euclidean", ...)
## Default S3 method:
KMEDOIDS(x, k, metric = "euclidean", ...)
## S3 method for class 'Coe'
KMEDOIDS(x, k, metric = "euclidean", ...)
## S3 method for class 'PCA'
KMEDOIDS(x, k, metric = "euclidean", retain, ...)
x |
a Coe or PCA object |
k |
numeric number of centers |
metric |
one of |
... |
additional arguments to feed cluster::pam |
retain |
when passing a PCA how many PCs to retain, or a proportion of total variance, see LDA |
see cluster::pam. Other components are returned (fac
, etc.)
Other multivariate:
CLUST()
,
KMEANS()
,
LDA()
,
MANOVA_PW()
,
MANOVA()
,
MDS()
,
MSHAPES()
,
NMDS()
,
PCA()
,
classification_metrics()
data(bot)
bp <- PCA(efourier(bot, 10))
KMEANS(bp, 2)
set.seed(123) # for reproducibility on a dummy matrix
matrix(rnorm(100, 10, 10)) %>%
KMEDOIDS(5)
# On a Coe
bot_f <- bot %>% efourier()
bot_k <- bot_f %>% KMEDOIDS(2)
# confusion matrix
table(bot_k$fac$type, bot_k$clustering)
# on a PCA
bot_k2 <- bot_f %>% PCA() %>% KMEDOIDS(12, retain=0.9)
# confusion matrix
with(bot_k, table(fac$type, clustering))
# silhouette plot
bot_k %>% plot_silhouette()
# average width as a function of k
k_range <- 2:12
widths <- sapply(k_range, function(k) KMEDOIDS(bot_f, k=k)$silinfo$avg.width)
plot(k_range, widths, type="b")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.