PCA | R Documentation |
Performs a PCA on Coe objects, using prcomp.
PCA(x, scale., center, fac)
## S3 method for class 'OutCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'OpnCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'LdkCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'TraCoe'
PCA(x, scale. = TRUE, center = TRUE, fac)
## Default S3 method:
PCA(x, scale. = TRUE, center = TRUE, fac = dplyr::tibble())
as_PCA(x, fac)
x |
a Coe object or an appropriate object (eg prcomp) for |
scale. |
logical whether to scale the input data |
center |
logical whether to center the input data |
fac |
any factor or data.frame to be passed to |
By default, methods on Coe object do not scale the input data but center them. There is also a generic method (eg for traditional morphometrics) that centers and scales data.
a 'PCA' object on which to apply plot.PCA, among others. This list has several
components, most of them inherited from the prcomp
object:
sdev
the standard deviations of the principal components
(i.e., the square roots of the eigenvalues of the
covariance/correlation matrix, though the calculation
is actually done with the singular values of the data matrix)
eig
the cumulated proportion of variance along the PC axes
rotation
the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
The function princomp returns this in the element loadings.
center
, scale the centering and scaling used
x
PCA scores (the value of the rotated data (the centred (and scaled if requested)
data multiplied by the rotation matrix))
other components are inherited from the Coe
object passed to PCA
,
eg fac
, mshape
, method
, baseline1
and baseline2
, etc. They
are documented in the corresponding *Coe
file.
Other multivariate:
CLUST()
,
KMEANS()
,
KMEDOIDS()
,
LDA()
,
MANOVA_PW()
,
MANOVA()
,
MDS()
,
MSHAPES()
,
NMDS()
,
classification_metrics()
bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
bot.p
plot(bot.p, morpho=FALSE)
plot(bot.p, 'type')
op <- npoly(olea, 5)
op.p <- PCA(op)
op.p
plot(op.p, 1, morpho=TRUE)
wp <- fgProcrustes(wings, tol=1e-4)
wpp <- PCA(wp)
wpp
plot(wpp, 1)
# "foreign prcomp"
head(iris)
iris.p <- prcomp(iris[, 1:4])
iris.p <- as_PCA(iris.p, iris[, 5])
class(iris.p)
plot(iris.p, 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.