Plots a cross-correlation table

Share:

Description

Or any contingency/confusion table. A simple graphic representation based on variable width and/or color for arrows or segments, based on the relative frequencies.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
plot_CV2(x, ...)

## S3 method for class 'LDA'
plot_CV2(x, ...)

## S3 method for class 'table'
plot_CV2(x, links.FUN = arrows, col = TRUE,
  col0 = "black", col.breaks = 5, palette = col_heat, lwd = TRUE,
  lwd0 = 5, gap.dots = 0.2, pch.dots = 20, gap.names = 0.25,
  cex.names = 1, legend = TRUE, ...)

Arguments

x

an LDA object, a table or a squared matrix

...

useless here.

links.FUN

a function to draw the links: eg segments (by default), arrows, etc.

col

logical whether to vary the color of the links

col0

a color for the default link (when col = FALSE)

col.breaks

the number of different colors

palette

a color palette, eg col_summer, col_hot, etc.

lwd

logical whether to vary the width of the links

lwd0

a width for the default link (when lwd = FALSE)

gap.dots

numeric to set space between the dots and the links

pch.dots

a pch for the dots

gap.names

numeric to set the space between the dots and the group names

cex.names

a cex for the names

legend

logical whether to add a legend

See Also

LDA, plot.LDA, plot_CV.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Below various table that you can try. We will use the last one for the examples.
## Not run: 
#pure random
a <- sample(rep(letters[1:4], each=10))
b <- sample(rep(letters[1:4], each=10))
tab <- table(a, b)

# veryhuge + some structure
a <- sample(rep(letters[1:10], each=10))
b <- sample(rep(letters[1:10], each=10))
tab <- table(a, b)
diag(tab) <- round(runif(10, 10, 20))

tab <- matrix(c(8, 3, 1, 0, 0,
                2, 7, 1, 2, 3,
                3, 5, 9, 1, 1,
                1, 1, 2, 7, 1,
                0, 9, 1, 4, 5), 5, 5, byrow=TRUE)
tab <- as.table(tab)

## End(Not run)
# good prediction
tab <- matrix(c(8, 1, 1, 0, 0,
               1, 7, 1, 0, 0,
                1, 2, 9, 1, 0,
                1, 1, 1, 7, 1,
                0, 0, 0, 1, 8), 5, 5, byrow=TRUE)
tab <- as.table(tab)


plot_CV2(tab)
plot_CV2(tab, arrows) # if you prefer arrows
plot_CV2(tab, lwd=FALSE, lwd0=1, palette=col_india) # if you like india but not lwds
plot_CV2(tab, col=FALSE, col0='pink') # only lwd
plot_CV2(tab, col=FALSE, lwd0=10, cex.names=2) # if you're getting old
plot_CV2(tab, col=FALSE, lwd=FALSE) # pretty but useless
plot_CV2(tab, col.breaks=2) # if you think it's either good or bad
plot_CV2(tab, pch=NA) # if you do not like dots
plot_CV2(tab, gap.dots=0) # if you want to 'fill the gap'
plot_CV2(tab, gap.dots=1) # or not

#trilo examples
data(trilo)
trilo.f <- efourier(trilo, 8)
trilo.l <- LDA(PCA(trilo.f), 'onto')
trilo.l
plot_CV2(trilo.l)

# olea example
data(olea)
op <- opoly(olea, 5)
opl <- LDA(PCA(op), 'var')
plot_CV2(opl)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.