evalPol: Evaluating Polynomials

Description Usage Arguments Value Author(s) Examples

View source: R/util.R

Description

Function to evaluate polynomials in a numerical robust way using the Horner scheme

Usage

1

Arguments

x

numerical values at which to evaluate polynomials, can be provided in a vector, matrix, array or data frame

beta

numerical vector containing the coefficient of the polynomial

Value

The result of evaluating the polynomial at the values in x, returned in the same dimension as x has.

Author(s)

Berwin A Turlach <Berwin.Turlach@gmail.com>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
beta <- c(1,2,1)

x <- 0:10
evalPol(x, beta)
str(evalPol(x, beta))

x <- cbind(0:10, 10:0)
evalPol(x, beta)
str(evalPol(x, beta))


x <- data.frame(x=0:10, y=10:0)
evalPol(x, beta)
str(evalPol(x, beta))

Example output

Loading required package: quadprog
 [1]   1   4   9  16  25  36  49  64  81 100 121
 num [1:11] 1 4 9 16 25 36 49 64 81 100 ...
      [,1] [,2]
 [1,]    1  121
 [2,]    4  100
 [3,]    9   81
 [4,]   16   64
 [5,]   25   49
 [6,]   36   36
 [7,]   49   25
 [8,]   64   16
 [9,]   81    9
[10,]  100    4
[11,]  121    1
 num [1:11, 1:2] 1 4 9 16 25 36 49 64 81 100 ...
     x   y
1    1 121
2    4 100
3    9  81
4   16  64
5   25  49
6   36  36
7   49  25
8   64  16
9   81   9
10 100   4
11 121   1
'data.frame':	11 obs. of  2 variables:
 $ x: num  1 4 9 16 25 36 49 64 81 100 ...
 $ y: num  121 100 81 64 49 36 25 16 9 4 ...

MonoPoly documentation built on May 2, 2019, 7:59 a.m.

Related to evalPol in MonoPoly...