Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, message = FALSE)
library(NBtsVarSel)
library(ggplot2)
library(formatR)
set.seed(555)
## ----Y------------------------------------------------------------------------
data(Y)
## ----dimensions, echo=FALSE, eval=TRUE----------------------------------------
n = length(Y)
p = 30
## ----gamma_alpha, echo=FALSE, eval=TRUE---------------------------------------
gamma = c(0.5)
alpha = 2
## ----beta, echo=FALSE, eval=TRUE----------------------------------------------
active=c(1,3,17,21,23)
beta_t_pos=c(1.73,0.38,0.29,-0.64,-0.13)
beta = rep(0,(p+1))
beta[active] = beta_t_pos
## ----X, echo=FALSE, eval=TRUE-------------------------------------------------
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
## ----initialization-----------------------------------------------------------
gamma0 = c(0)
glm_nb = glm.nb(Y~t(X)[,2:(p+1)])
beta0<-as.numeric(glm_nb$coefficients)
alpha0 = glm_nb$theta
## ----gammaEst-----------------------------------------------------------------
gamma_est_nr = NR_gamma(Y, X, beta0, gamma0, alpha0, n.iter=100)
gamma_est_nr
## ----variableSelection, tidy=TRUE, tidy.opts=list(width.cutoff=60)------------
result = variable_selectionresult = variable_selection(Y, X, gamma.init=gamma0, alpha.init=NULL, k.max=1, method="cv", t=0.3, n.iter=100, n.rep=1000)
beta_est = result$beta_est
Estim_active = result$estim_active
gamma_est = result$gamma_est
alpha_est = result$alpha_est
## ----print, echo=FALSE, eval=TRUE---------------------------------------------
cat("Estimated active coefficients: ", Estim_active, "\n")
cat("Estimated gamma: ", gamma_est, "\n")
cat("Estimated alphaa: ", alpha_est, "\n")
## ----plot, fig.width=6, fig.height=4, tidy=TRUE, tidy.opts=list(width.cutoff=54)----
#First, we make a dataset of estimated betas
beta_data = data.frame(beta_est)
colnames(beta_data)[1] <- "beta"
beta_data$Variable = seq(1, (p+1), 1)
beta_data$y = 0
beta_data = beta_data[beta_data$beta!=0,]
#Next, we make a dataset of true betas
beta_t_data = data.frame(beta)
colnames(beta_t_data)[1] <- "beta"
beta_t_data$Variable = seq(1, (p+1), 1)
beta_t_data$y = 0
beta_t_data = beta_t_data[beta_t_data$beta!=0,]
#Finally, we plot the result
plot = ggplot()+
geom_point(data = beta_data, aes(x=Variable, y=y, color=beta), pch=16, size=5, stroke = 2)+
geom_point(data= beta_t_data, aes(x=Variable, y=y, color=beta), pch=4, size=6, stroke = 2)+
scale_color_gradient2(name=expression(hat(beta)), midpoint=0, low="steelblue", mid = "white", high ="red")+
scale_x_continuous(breaks=c(1, seq(10, (p+1), 10)), limits=c(0, (p+1)))+
scale_y_continuous(breaks=c(), limits=c(-1, 1))+
theme(legend.title = element_text(color = "black", size = 12, face="bold"), legend.text = element_text(color = "black", size = 10))+
theme(axis.text.x = element_text(angle = 90), axis.text=element_text(size=10), axis.title=element_text(size=10,face="bold"), axis.title.y=element_blank())
plot
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.