R/p_bottleneck.R

# 0 : NN / NA
# 1 : NN / highest observed values
# 2 : calculated values

p_bottleneck <-
  function (loop.data, bn.data, slope, intercept) {
    if (is.null(bn.data)) {
      return(NULL)
    }

    theo <- loop.data$scope.theo
    flip.x <- loop.data$flip.x
    precision.x <- ifelse(bn.data$bn.x.id %in% c(1, 2, 4), 1, 3)

    if (is.na(intercept) || is.na(slope)) {
      mpx <- p_mpx_single_peer(bn.data, theo, flip.x)
    } else {
      mpx <- (bn.data$mpy - intercept) / slope
      mpx <- p_edge_cases(mpx, bn.data, theo, flip.x)
    }
    cases <- p_cases(loop.data, mpx)

    nn.value <- p_nn_value(mpx, loop.data, bn.data)
    na.value <- p_na_value(mpx, loop.data, bn.data)

    # Display Xs as percentage (either cutoff or 0-high) or percentile
    mpx.actual <- mpx
    mpx <- p_transform_mpx(loop.data, mpx, bn.data$bn.x.id)
    pretty_mpx <- p_pretty_mpx(loop.data, mpx, nn.value, na.value, precision.x)
    attr(pretty_mpx, "mpx.actual") <- mpx.actual
    if (bn.data$bn.x.id == 4) {
      attr(pretty_mpx, "cases") <- cases
    }

    return(pretty_mpx)
  }

p_bottleneck_ce <-
  function (loop.data, bn.data, peers, type) {
    if (is.null(bn.data)) {
      return(NULL)
    }

    theo <- loop.data$scope.theo
    flip.x <- loop.data$flip.x
    flip.y <- loop.data$flip.y
    precision.x <- ifelse(bn.data$bn.x.id %in% c(1, 2, 4), 1, 3)

    if (type == "fdh") {
      mpx <- p_bottleneck_fdh(bn.data, peers, flip.y)
    } else if (type == "vrs") {
      mpx <- p_bottleneck_vrs(bn.data, peers, flip.y)
    }
    cases <- p_cases(loop.data, mpx)

    mpx <- p_edge_cases(mpx, bn.data, theo, flip.x, FALSE)
    nn.value <- p_nn_value(mpx, loop.data, bn.data)
    na.value <- p_na_value(mpx, loop.data, bn.data)

    # Display Xs as percentage (either cutoff or 0-high) or percentile
    mpx.actual <- mpx
    mpx <- p_transform_mpx(loop.data, mpx, bn.data$bn.x.id)
    pretty_mpx <- p_pretty_mpx(loop.data, mpx, nn.value, na.value, precision.x)
    attr(pretty_mpx, "mpx.actual") <- mpx.actual
    if (bn.data$bn.x.id == 4) {
      attr(pretty_mpx, "cases") <- cases
    }

    return(pretty_mpx)
  }

p_bottleneck_fdh <-
  function (bn.data, peers, flip.y) {
    mpy <- bn.data$mpy
    mpx <- matrix(nrow = length(mpy), ncol = 1)
    x.peers <- peers[, 1]
    y.peers <- peers[, 2]

    for (j in 1:length(mpy)) {
      # search the peer that is closest above to the desired outcome,
      # and select it corresponding x value of that peer
      if (flip.y) {
        index <- which(y.peers < (mpy[j, 1] + epsilon))[1]
      } else {
        index <- which(y.peers > (mpy[j, 1] - epsilon))[1]
      }

      if (is.na(index)) {
        mpx[j, 1] <- NA
      } else {
        mpx[j, 1] <- x.peers[index]
      }
    }

    return(mpx)
  }

p_bottleneck_vrs <-
  function (bn.data, peers, flip.y) {
    mpy <- bn.data$mpy
    mpx <- matrix(nrow = length(mpy), ncol = 1)
    x.peers <- peers[, 1]
    y.peers <- peers[, 2]

    calculate_x <- function (y, peers, index) {
      p1 <- peers[index - 1,]
      p2 <- peers[index,]
      return(p1[1] + (y - p1[2]) * (p1[1] - p2[1]) / (p1[2] - p2[2]))
    }

    for (j in 1:length(mpy)) {
      if (flip.y) {
        index <- which(y.peers < (mpy[j, 1] + epsilon))[1]
      } else {
        index <- which(y.peers > (mpy[j, 1] - epsilon))[1]
      }

      if (is.na(index)) {
        mpx[j, 1] <- NA
      } else if (index == 1) {
        mpx[j, 1] <- x.peers[index]
      } else {
        mpx[j, 1] <- calculate_x(mpy[j, 1], peers, index)
      }
    }

    return(mpx)
  }

p_mpx_single_peer <-
  function (bn.data, theo, flip.x) {
    mpy <- bn.data$mpy
    cutoff <- bn.data$cutoff

    # if peers is a vector there is only one peer
    if (cutoff == 0) {
      mpx <- matrix(Inf, nrow = length(mpy), ncol = 1)
    } else {
      mpx <- matrix(theo[1 + flip.x], nrow = length(mpy), ncol = 1)
    }
    return(mpx)
  }

p_transform_mpx <-
  function (loop.data, mpx, bn.x.id) {
    flip.x <- loop.data$flip.x
    theo <- loop.data$scope.theo

    # Display Xs as percentage (either cutoff or 0-high) or percentile
    if (bn.x.id == 1) {
      mpx <- 100 * (mpx - theo[1]) / (theo[2] - theo[1])
    } else if (bn.x.id == 2) {
      mpx <- 100 * mpx / theo[2]
    } else if (bn.x.id == 4) {
      if (flip.x) {
        percentile <- ecdf(sort(-loop.data$x))
        tmp <- -mpx - epsilon
      }
      else {
        percentile <- ecdf(sort(loop.data$x))
        tmp <- mpx - epsilon
      }
      mpx <- matrix(100 * percentile(tmp), ncol = 1)
      mpx[mpx == 0] <- Inf
    }

    return(mpx)
  }

p_nn_value <-
  function (mpx, loop.data, bn.data) {
    if (bn.data$cutoff %in% c(0, 1)) {
      return("NN")
    }

    flip.x <- loop.data$flip.x
    theo <- loop.data$scope.emp
    nn.value <- p_if_min_else_max(!flip.x, mpx, na.rm = TRUE)

    return(p_transform_value(loop.data, nn.value, theo, bn.data$bn.x.id))
  }

p_na_value <-
  function (mpx, loop.data, bn.data) {
    if (bn.data$cutoff == 0) {
      return("NA")
    }

    flip.x <- loop.data$flip.x
    theo <- loop.data$scope.theo
    na.value <- p_if_min_else_max(flip.x, mpx, na.rm = TRUE)

    return(p_transform_value(loop.data, na.value, theo, bn.data$bn.x.id))
  }

p_transform_value <-
  function (loop.data, value, theo, bn.x.id) {
    if (bn.x.id == 1) {
      value <- 100 * (value - theo[1]) / (theo[2] - theo[1])
    } else if (bn.x.id == 2) {
      value <- 100 * value / theo[2]
    } else if (bn.x.id == 4) {
      percentile <- ecdf(sort(loop.data$x))
      value <- 100 * percentile(value)
    }

    return(value)
  }

p_pretty_mpx <-
  function (loop.data, mpx, nn.value, na.value, precision.x) {

    subst <- function (x) {
      if (is.na(x)) {
        return(p_pretty_number(na.value, na.value, prec = precision.x))
      } else if (is.infinite(x)) {
        if (is.infinite(nn.value)) { nn.value <- "NN" }
        return(p_pretty_number(nn.value, nn.value, prec = precision.x))
      } else {
        return(p_pretty_number(x, prec = precision.x))
      }
    }

    mpx <- matrix(mapply(subst, mpx), ncol = 1)
    colnames(mpx) <- c(loop.data$names[loop.data$idx])

    return(mpx)
  }

p_edge_cases <-
  function (mpx, bn.data, theo, flip.x, use.epsilon = FALSE) {
    tmp <- ifelse(use.epsilon, epsilon, 0)
    mpx[mpx < (theo[1] + epsilon)] <- ifelse(flip.x, NA, -Inf)
    if (bn.data$cutoff == 0) {
      mpx[mpx > (theo[2] - tmp)] <- ifelse(flip.x, Inf, NA)
    } else if (bn.data$cutoff == 1) {
      mpx[mpx > (theo[2] - tmp)] <- theo[2]
    }

    return(mpx)
  }

p_cases <-
  function (loop.data, mpx) {
    x <- loop.data$x
    flip.x <- loop.data$flip.x
    mpx.cases <- mpx + ifelse(flip.x, epsilon, -epsilon)
    factor <- ifelse(flip.x, -1, 1)
    percentile <- ecdf(sort(factor * x))
    cases <- percentile(factor * mpx.cases) * nrow(x)
    return(cases)
  }

Try the NCA package in your browser

Any scripts or data that you put into this service are public.

NCA documentation built on Dec. 21, 2025, 5:07 p.m.