Nothing
################################################################
## Copyright 2014 Tracy Holsclaw.
## This file is part of NHMM.
## NHMM is free software: you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation, either version 3 of the License, or any later version.
## NHMM is distributed in the hope that it will be useful, but WITHOUT ANY
## WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
## A PARTICULAR PURPOSE. See the GNU General Public License for more details.
## You should have received a copy of the GNU General Public License along with
## NHMM. If not, see <http://www.gnu.org/licenses/>.
#############################################################
#' Bayesian Non-homogeneous Markov Model with Multivariate Normal emission distribution (NHMMMVN)
#'
#' \code{NHMM_MVN} calculates an NHMM for multiple sequences of data.
#' The sequences can actually be short sets of equal length sequences (subseq).
#' The traditional input variables (X) influence the non-homogenous transition probabiities
#' of the model. An additional set of input variables (W) can be included to influence the mean
#' of the emission distribution. All parameters are sampled
#' via Gibbs steps (latent variables such that no tuning is needed.) The X variable coefficients
#' are sampled through an unordered Multinomial logit model Polya-Gamma formulation (Polson, Scott, Windle).
#' The hidden states are sampled through a blocked Gibbs sampler.
#'
#'
#' @param y T by J matrix of data (J=1 is sufficient)
#' - missing data is denoted with NA
#' @param subseq [optional] if y is actually a set of subsequences then give the length of those
#' sequences (122 for JJAS) (365 is not it!). Default is subseq=T.
#'
#' @param X B by T matrix for the transition input data (B different inputs)
#' Missing values are not allowed. If there are no Xs then use HMM function.
#' @param betapriorm [optional] default=NULL which is reference prior. Or a [K+B by K matrix] for
#' the mean of the Normal prior for the beta coefficients.
#' @param betapriorp [optional] default=NULL which is reference prior. Or a [K+B by K+B by K array] for
#' the precision prior(1/sig^2) of the Normal prior for the beta coefficients.
#'
#' @param K number of states (default=2)
#' @param iters number of iterations to keep after burn in (default=1000)
#' @param burnin the number of burn in (default=200)
#'
#' @param W [optional] is an A by T by J array of emission input data (A different inputs),
#' missing values are not allowed, do not include an intercept term here
#' The mean function depends on W.
#' @param psipriorm [optional] default=NULL which is reference prior. Or a [K+A by J matrix] for
#' the mean of the Normal prior for the beta coefficients.
#' @param psipriorp [optional] default=NULL which is reference prior. Or a [K+A by J matrix] for
#' the precision prior(1/sig^2) of the Normal prior for the beta coefficients.
#' @param priors1 [optional] scale parameter for each state (vector of length K) of the Wishart prior for Sigma
#' priors1=NULL is set to 1
#' @param priors2 [optional] Covariance matrix [J by J by K] for the MVN for each state, second parameter
#' of the Wishart for the Sigma matrix.
#' priors2=NULL will be a diagonal matrix with diagonal set to 1
#'
#' @param outdir [optional] can output each set of parameters to output files in a directory
#' use this with larger dimension data sets or with large number of iterations
#' the output will be written line by line and not overburden the memory limit
#' outdir needs to end with a slash or double slash depending on OS.
#'
#'
#' @param ymiss [optional-TRUE/FALSE] if outdir is specified then draws for any missing
#' data points will be saved to ymiss-J*.txt. There will be one data point for
#' each sequence of length Tmiss (the amount missing from that sequence).
#' Each row of the output file will be an iteration of the algorithm after burnin is
#' removed.
#'
#' @param yrep [optional] number (ie. 100,200,or 500) of output replicate data sets
#' to print to outdir. The replicates will be the same dimension as y and start
#' after burn in period. default is zero. These replicate data sets are
#' generated from the same input variables.
#' - must be shorter than iters
#'
#' @param ypred number of predictive sets (ie. 0,100, 200, 500)
#' - must be shorter than iters
#' Predicted chains: will produce ypred set of predictives [pT by J] to print to outdir.
#' yrep uses the same inputs to make replications but ypred uses new input
#' values of X and W to make predictions over a different time span (pT)
#' Also outputs a set of predictive z values or length (pT by ypred)
#' @param Xp predictive set of Xs of length pT [B by pT]
#' -missing values is not allowed
#' -ensure that the Xp inputs are in the same order as X
#' @param Wp predictive set of Ws of length pT [A by pT by J]
#' -missing valus are not allowed
#' -ensure that the Wp inputs are in the same order as W
#'@param yhold [optioinal] a sequence of y observed values [pT by J], held out data that is
#' of length ypred that is used to compute the predictive log score (PLS)
#' which is a metric like BIC (ie. hold out last 10% of data or do 5-fold CV).
#' missing data values are filled in with mean PLS value.
#' PLS is the average PLS across sequences.
#'
#' @return my.nhmm object
#' @examples ## Multivariate Normal data
#' \dontrun{
#' data(NHMMdata)
#' attach(NHMMdata)
#'
#' my.nhmm1=NHMM_MVN(y=ymvn, X=tX, W=tW2, K=3, iters=50, burnin=10,
#' priors1=rep(2,3))
#' OBIC(my.nhmm1)
#' zz=Oz(my.nhmm1) #compare with the truth zgamma
#' qq=OQQ(my.nhmm1)
#' bb=OXcoef(my.nhmm1)
#' pp=OWcoef(my.nhmm1,FALSE)
#' tt=Oemparams(my.nhmm1,FALSE) #just Sigma matrix for MVN, returns mean of Sigma
#'
#'
#' #filelocation="C:\\Users\\iamrandom\\Desktop\\here\\"
#' #my.nhmm6=NHMM_MVN(y=ymvn[1:1800,], X=matrix(tX[,1:1800],1,1800),
#' # W=array(tW2[,1:1800,],dim=c(2,1800,15)), K=3, iters=50,
#' # burnin=10,outdir=filelocation, ymiss=TRUE, yrep=10,
#' # Xp=matrix(tX[,1801:2000],1,200),
#' # Wp=array(tW2[,1801:2000,],dim=c(2,200,15)), ypred=10,
#' # yhold=ymvn[1801:2000,])
#' #OBIC(my.nhmm6)
#'
#' #Could try it with K=1, to compare K=1 to K=3
#' }
NHMM_MVN=function(y, subseq=NULL, X=NULL, betapriorm=NULL, betapriorp=NULL, K=2, iters=1000, burnin=200, W=NULL, psipriorm=NULL,psipriorp=NULL, priors1=NULL, priors2=NULL, outdir=NULL, ymiss=FALSE, yrep=0 ,ypred=0, Xp=NULL, Wp=NULL, yhold=NULL)
{
Xnull=is.null(X)
if(is.null(outdir) && yrep>0)
{ stop("Please specify outdir if you want yrep=TRUE.")}
if(iters>20000){stop("Use outdir parameter, not enough memory to store all of the output")}
if(!is.null(outdir)){outboo=TRUE}else{outboo=FALSE} #there is an output file
if(!is.matrix(y)==TRUE){stop("y needs to be a matrix")}
T=dim(y)[1]
if(T<=0){stop("No y data added")}
J=dim(y)[2]
if(T<=4){stop("y sequences are too short")}
if(T<=15){warning("y sequences are quiet short")} #15 is an arbitrary number
### missing data
yboo=is.na(y) #finds missing values
y[yboo]=mean(y) #simple imputation of missings to mean
if(sum(yboo)/(T*J) > .50){ warning("Over 50% of your data is missing. Results may be questionable.")}
y[yboo]=mean(na.omit(y)) #fill in missingness
if(K >= 0)
{ if(K==0){K=1} #K=0 and K=1 are treated the same
}else{stop("Invalid choice for K")}
if(T < K){stop("Data sequence is shorter than the number of states")}
####### X
if(is.null(X))
{ stop("No X inputs provided, use HMM or MVHMM instead; transitions are homogeneous")
}
if(sum(is.na(X))>0){stop("X has NA values; this is not allowed")}
B=dim(X)[1]
if(B < 1){stop("Need to provide X data")}
######## W
if(is.null(W)){ A=0;
}else{
if(dim(W)[1]<=0){stop("Provide W data or leave it set to NULL")}
if(dim(W)[2] != T || dim(W)[3] != J){stop("W is not the right dimension")}
if(sum(is.na(W))>0){stop("W has NA values; this is not allowed")}
A=dim(W)[1]
}
########################### subseq #########################################
if(is.null(subseq)){subseq=T}
if(subseq > 0)
{ if(T%%subseq !=0)
{ stop("subseq is incorrect and the length of y cannot be split evenly into subseq pieces")
}else{ subseqy=rep(1:(T/subseq),each=subseq)
}
}
subboo=rep(0,T)
for(t in 1:(T-1))
{ if(subseqy[t]!=subseqy[t+1]){ subboo[t]=1}
}
if(subseq <=4){stop("subsequences are too short")}
if(subseq <=15){warning("subsequences are quite short")}
if(subseq<K){stop("subsequences are shorter than K")}
############################################################################
if(burnin < 0){stop("Use different amount of burnin")}
if(iters <0){stop("Use different iterations")}
### Set the priors for betas (B > 0)
if(is.null(betapriorm) ) #reference prior is all zeros
{ betapriorm=matrix(0,K+B,K) #mean for the B input variables and K states
}
if(is.null(betapriorp)) #reference prior is all zeros
{ betapriorp=array(0, dim=c(K+B,K+B,K)) #precision for the B input variables each have
}
if(is.null(psipriorm) ) #reference prior is all zeros
{ psipriorm=matrix(0,A+K,J) #mean for the A input variables
}
if( is.null(psipriorp)) #reference prior is all zeros
{ psipriorp=matrix(0,A+K,J) #precision for the A input variables
}
###################################################
### set up hidden states (latent variable z) ###########
z=numeric(T) ### initialize z by roughly sorting y into K bins
yy=apply(y,1,sum)
z=cutree(hclust(dist(yy)), k=K)
sumy=numeric(K)
for(k in 1:K){ sumy[k]=sum(z==k)}
if(is.element(0,sumy)==0){z[order(yy)]=c(rep(1:K,each=floor(T/K)),rep(K,T%%K))}
theta=array(0,dim=c(J,J,K))
for(k in 1:K)
{ theta[,,k]=var(y) #initialize
}
if(is.null(priors1)) #non-informative prior
{ priors1=rep(1,K)
}
if(is.null(priors2)) #non-informative prior
{ priors2=array(0,dim=c(J,J,K))
for(k in 1:K)
{ priors2[,,k]=diag(J)*1 #not precision
}
}
if( dim(priors2)[1]!=J){stop("Wrong first dimension of *priors2* input")}
if( dim(priors2)[2]!=J){stop("Wrong second dimension of *priors2* input")}
if( dim(priors2)[3]!=K){stop("Wrong first dimension of *priors2* input")}
if(sum(priors1<= 0) >0)
{ stop("priors must be greater than zero")}
if(ypred> iters || yrep > iters){stop("iters must be larger than both ypred or yrep.")}
if(ypred>0 || !is.null(yhold)) #Wp: A pT J, Xp: B pT
{ pT=0
if(!is.null(Xp)){ pT=dim(Xp)[2]}else{stop("For ypred greater than zero, there must be an Xp.")}
if(pT<1){stop("Xp is not long enough (must be greater than zero)")}
if(!is.null(Wp))
{ if(dim(Wp)[2] != dim(Xp)[2]){stop("Wp and Xp are not the same length")}
if(A != dim(Wp)[1]){stop("A for W and A for Wp are different")}
if(J != dim(Wp)[3]){stop("J for Wp is wrong")}
if(sum(is.na(Wp))>0){stop("W has NA values; this is not allowed")}
}
if(B != dim(Xp)[1]){stop("B for X and B for Xp are different")}
if(sum(is.na(Xp))>0){stop("W has NA values; this is not allowed")}
if(!is.null(Xp)){pT=dim(Xp)[2]}else{stop("Xp is needs data")}
}
if(!is.null(yhold))
{ if(dim(yhold)[1]!=pT | dim(yhold)[2]!=J){stop("yhold is not the correct dimensions.")}
}
if(ymiss==TRUE && is.null(outdir)){stop("must specify outdir to have ymiss=TRUE")}
NHMM_MVNmain( z, theta, y, yboo, subseqy, subboo, X, betapriorm, betapriorp, K, iters, burnin, W, psipriorm, psipriorp, priors1, priors2, outdir,outboo, yrep, Xp, Wp, ypred, yhold, ymiss)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.