Nothing
#' SPC_DSM
#' @description A single linear model with dispersion summation minimization.
#' @details This function is to process phase error correction through a single linear model with dispersion summation minimization,
#' followed by polynomial baseline correction if necessary
#' @param specdat A complex number vector of observed frequency domain data
#' @param withBC A logical parameter that enables/disables baseline correction after baseline correction
#' @return A numeric vector of phase corrected absorption spectrum
#' @concept phase correction
#' @author Aixiang Jiang
#' @references
#'
#' Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5
#'
#' Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline
#' Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.
#' @import baseline
#'
#' @examples
#' data("fdat")
#' spc_dsm_phased1 <- SPC_DSM(fdat$frequency_domain)
#' @export
SPC_DSM = function (specdat, withBC = TRUE){
hdat=cbind(Re(specdat), Im(specdat))
pspec=hdat[,1]**2+hdat[,2]**2
maxi=which.max(pspec)
ph0Initial = -atan2(hdat[maxi,2],hdat[maxi,1])
ph1Initial=0.005
#### get optimized parameters of ph0 and ph1
optimRes=stats::optim(par=c(ph0Initial,ph1Initial),fn=sumD, specDat=hdat)
bestPh=optimRes$par
nn=dim(hdat)[1]
angles=bestPh[1]+bestPh[2]*c(1:nn)/nn
dat3col=cbind(hdat, angles)
phasedDat=t(apply(dat3col, 1, phaseCorr2))
phasedAll = phasedDat[,1]
if(withBC == TRUE){
tryBL=myBaseline(phasedAll,bsDf=5, BL_method="modpolyfit")
phasedAll = as.numeric(tryBL)
}
return(phasedAll)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.