Nothing
## DO NOT MODIFY THIS BLOCK (unless you know what you're doing) library(knitr) library(rprojroot) opts_knit$set(root.dir = find_root( has_file(".Rprofile") | is_rstudio_project | is_r_package | is_git_root )) opts_chunk$set(echo = FALSE) opts_chunk$set(message = FALSE) if(!is.null(knitr::opts_knit$get('rmarkdown.pandoc.to'))){ .m <- params$m }
## LOAD PACKAGES HERE library(dplyr) library(ggplot2) devtools::load_all()
wait_finish(.m)
.m
idEXPstat <- function(d, ...){ ## example statistic function ## arg = nonmem dataset data.frame ## return data.frame with statistic column d %>% group_by(ID, ...) %>% filter(is.na(AMT)) %>% summarise( AUC = AUC(time = TIME, conc = DV), CMAX = max(DV, na.rm = TRUE), TMAX = TIME[which.max(DV)] ) %>% tidyr::gather(key = "exposure", value = "statistic", AUC:TMAX) %>% ungroup() } EXPstat <- function(d, ...){ ## example statistic function ## arg = nonmem dataset data.frame ## return data.frame with statistic column d %>% idEXPstat(...) %>% ## reuse idEXPstat for individual stats ## summarise over study and any other variables (...) group_by(exposure, ...) %>% summarise( median = median(statistic, na.rm = TRUE), cv = 100*sd(statistic, na.rm = TRUE)/mean(statistic, na.rm = TRUE) ) %>% tidyr::gather(key = "type", value = "statistic", median:cv) }
d <- .m %>% input_data(filter = TRUE) d %>% mutate(id_period = paste(ID, TIME)) %>% ggplot(aes(x = TIME, y = DV, group = ID)) + theme_bw() + geom_line()
ppc_data0 <- .m %>% ppc_data(EXPstat) ppc_data0 %>% filter(type %in% "median") %>% ## redefine exposure to include the type of summary mutate(exposure = paste(type, exposure, sep = "_")) %>% ppc_histogram_plot(exposure) ppc_data0 %>% filter(type %in% "cv") %>% ## redefine exposure to include the type of summary mutate(exposure = paste(type, exposure, sep = "_")) %>% ppc_histogram_plot(exposure)
addWT_c <- . %>% mutate( WT_c = Hmisc::cut2(WT, g = 2) ) ppc_data0 <- .m %>% ppc_data(EXPstat, WT_c, pre_proc = addWT_c) ppc_data0 %>% filter(type %in% "median") %>% ## redefine exposure to include the type of summary mutate(exposure = paste(type, exposure, sep = "_")) %>% ppc_histogram_plot(WT_c, exposure) ppc_data0 %>% filter(type %in% "cv") %>% ## redefine exposure to include the type of summary mutate(exposure = paste(type, exposure, sep = "_")) %>% ppc_histogram_plot(WT_c, exposure) ppc_data0 %>% filter(type %in% "median") %>% ## redefine exposure to include the type of summary mutate(exposure = paste(type, exposure, sep = "_")) %>% ppc_whisker_plot(WT_c, exposure) ppc_data0 %>% ppc_whisker_plot(WT_c, type) + facet_wrap(~type+exposure, scales = "free")
ppc_data0 <- .m %>% ppc_data(idEXPstat) ppc_data0 %>% ppc_whisker_plot(factor(ID), exposure)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.