ppc_data | R Documentation |
ppc_data( r, FUN, ..., pre_proc = identity, max_mod_no = NA, DV = "DV", statistic = "statistic" ) ppc_whisker_plot(d, group, var1, var2, statistic = "statistic") ppc_histogram_plot(d, var1, var2, statistic = "statistic")
r |
An nm object (a simulation run). |
FUN |
Statistic function accepting a NONMEM dataset |
... |
Additional arguments for |
pre_proc |
Function to apply to dataset prior to compute statistics. |
max_mod_no |
Integer. Maximum model number to read (set low for debugging). |
DV |
Character (default = |
statistic |
Character (default = |
d |
Output from |
group, var1, var2 |
Grouping variables for plotting. |
The function ppc_data()
return a data.frame
with observed and
predicted statistics. The ppc_*_plot()
plotting functions return ggplot
objects.
nm_render()
## requires NONMEM to be installed ## Not run: idEXPstat <- function(d, ...) { ## example individual statistic function ## arg = nonmem dataset data.frame ## return data.frame with statistic column d %>% group_by(ID, ...) %>% filter(is.na(AMT)) %>% summarise( AUC = AUC(time = TIME, conc = DV), CMAX = max(DV, na.rm = TRUE), TMAX = TIME[which.max(DV)] ) %>% tidyr::gather(key = "exposure", value = "statistic", AUC:TMAX) %>% ungroup() } EXPstat <- function(d, ...) { ## example summary statistic function ## arg = nonmem dataset data.frame ## return data.frame with statistic column d %>% idEXPstat(...) %>% ## reuse idEXPstat for individual stats ## summarise over study and any other variables (...) group_by(exposure, ...) %>% summarise( median = median(statistic, na.rm = TRUE), cv = 100 * sd(statistic, na.rm = TRUE) / mean(statistic, na.rm = TRUE) ) %>% tidyr::gather(key = "type", value = "statistic", median:cv) } dppc <- m1s %>% ppc_data(EXPstat) dppc %>% ppc_whisker_plot() dppc %>% ppc_forest_plot() ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.