Nothing
#' This is some description of this function.
#' @title Simulation data generation of PH model with time-varying coefficients.
#' @description An example of data generation for nonparametric PH model.
#' @details 'npsimu' is designed for PH model with time-varying coefficients, h(t) = h0(t)exp(b(t)'Z), generating the covariates, observed time and censoring indicator.
#' @param n The number of sample size, which can be self-determined.
#' @param cenpara Censoring parameter, which is supposed to be positive, for adjustment of censoring rate.
#' @return a list that contain covariates, observed time and censoring indicator.
#' @examples
#' data = npsimu(200)
npsimu = function(n, cenpara = NULL){
beta1 = function(t){t^2}
beta2 = function(t){1-t}
cva = data.frame(Z1 = runif(n,0.01,1), Z2 = runif(n,0.01,2))
Z = as.matrix(cva)
if(is.null(cenpara)){ cenpara = 4 }
cen = runif(n,0,cenpara)
Ti = array();X = array()
for(i in 1:n){
tem = log(runif(1,0,1))
lamt = function(t){ exp(beta1(t)*Z[i,1] + Z[i,2]*beta2(t) - 1) }
Ft = function(t){ integrate(lamt,0,t)$value + tem }
Ti[i] = ifelse(Ft(0)*Ft(10)<0,unlist(uniroot(Ft,c(0,10),tol = 1e-4)$root),10)
X[i] = min(Ti[i],cen[i])
}
delta = as.numeric(Ti < cen)
cenrate = 1 - sum(delta)/n
data = list(cva = cva, delta = delta, obstime = X)
return(data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.