demo/radon.R

require(NU.Learning)

# Use the radon data of Krstic & Obenchain (2016).
data(radon)
# outcome:    lcanmort ...continuous
# treatment:  lnradon  ...continuous Exposure (natural log, Winsorized to exceed -3.0)

# Define Cluster Hierarchy for UNSUPERVISED, nonparametric analyses...
xvars  = c("obesity","over65","cursmoke")
hclobj = NUcluster(radon, xvars)       # defalut clustering method = "ward.D"
hclobj  
plot(hclobj)

# Save Local Control basic parameter settings to an environment that will be Updated...
e = NUsetup(hclobj, radon, lnradon, lcanmort)
ls.str(e)

# Compute and Save LRC distributions for a range of K = Number of Clusters...
mort010 = lrcagg( 10, e)
mort050 = lrcagg( 50, e)     # Average Cluster Size: ~58 US Counties
plot(mort050, show="ecdf", e)
mort100 = lrcagg(100, e)
mort200 = lrcagg(200, e)     # Average Cluster Size: Only ~14 US Counties
plot(mort200, show="ecdf", e)

# "Sensitivity Analysis" Summary...
NUcompare(e) 
# LTD Distribution for 50 Clusters appears to Optimize Variance-Bias Trade-Offs... 

# Save and plot IV distributions for 2 values of K = Number of Clusters...
iv050  = ivadj(mort050)
plot(iv050)        # graphical display
iv200  = ivadj(mort200)
plot(iv200)        # graphical display

# Confirm: Does the Observed LRC distribution for 50 clusters truly differ from
# the Random Permutation NULL distribution assuming x_Covariates are Ignorable?
system.time( conf050 <- confirm(mort050) )       # Simulation takes ~6 seconds. 
conf050
plot(conf050)

# Simulate maximum p-value for observed Kolmogorov-Smirnov D-statistic... 
system.time( ksd050 <- KSperm(conf050) )         # Simulation takes ~12 seconds.   
ksd050
plot(ksd050)

# Example: "Most-Like-Me" Visualizations for Residents of
#          Teller County, Colorado:
# The "fips" code is a unique identifier of US Counties...
subset(radon, fips == 8119)
# xvars: "obesity"  "over65"   "cursmoke"
xvecTC = c(17.2, 7.5, 24.4)  
mlmeTC = mlme(e, hclobj, mort050, xvecTC )
# Implicit print...
mlmeTC
plot(mlmeTC, NN = 250)
# Summary Statistics...
mlme.stats(mlmeTC, NN = 250)

### End of demo(radon) ###############################################
 

Try the NU.Learning package in your browser

Any scripts or data that you put into this service are public.

NU.Learning documentation built on Oct. 1, 2023, 1:06 a.m.