Description Usage Arguments Details Value Author(s) References Examples
Computes the small-worldness measure of a network
1 2 3 4 5 6 | smallworldness(
A,
iter = 100,
progBar = FALSE,
method = c("HG", "rand", "TJHBL")
)
|
A |
An adjacency matrix of network data |
iter |
Number of random (or lattice) networks to generate, which are used to calculate the mean random ASPL and CC (or lattice) |
progBar |
Defaults to |
method |
Defaults to |
For "rand"
, values > 1 indicate a small-world network.
For "HG"
, values > 3 indicate a small-world network.
For "TJHBL"
, values near 0 indicate a small-world network,
while < 0 indicates a more regular network and > 0 indicates a more random network
Returns a list containing:
swm |
Small-worldness value |
rASPL |
Global average shortest path length from random network |
lrCCt |
When |
Alexander Christensen <alexpaulchristensen@gmail.com>
Humphries, M. D., & Gurney, K. (2008). Network 'small-world-ness': A quantitative method for determining canonical network equivalence. PLoS one, 3, e0002051.
Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., & Laurienti, P. J. (2011). The ubiquity of small-world networks. Brain Connectivity, 1(5), 367-375.
1 2 3 4 5 6 7 8 9 | # Pearson's correlation only for CRAN checks
A <- TMFG(neoOpen, normal = FALSE)$A
swmHG <- smallworldness(A, method="HG")
swmRand <- smallworldness(A, method="rand")
swmTJHBL <- smallworldness(A, method="TJHBL")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.