Nothing
testthat::skip_on_cran()
set.seed(1)
test_that("packages can be loaded properly", {
library("NeuralEstimators")
library("JuliaConnectoR")
expect_equal(1, 1)
})
test_that("julia can be called", {
x <- juliaEval('
1 + 1
')
expect_equal(x, 2)
})
test_that("Flux is available", {
juliaEval('
# Install the package if not already installed
using Pkg
installed = "Flux" ∈ keys(Pkg.project().dependencies)
if !installed
Pkg.add("Flux")
end
using Flux
')
expect_equal(1, 1)
})
test_that("the Julia version of NeuralEstimators is available", {
juliaEval('
# Install the package if not already installed
using Pkg
installed = "NeuralEstimators" ∈ keys(Pkg.project().dependencies)
if !installed
Pkg.add(url = "https://github.com/msainsburydale/NeuralEstimators.jl")
end
using NeuralEstimators
')
expect_equal(1, 1)
})
test_that("plotestimates() is working", {
K <- 50
df <- data.frame(
estimator = c("Estimator 1", "Estimator 2"),
parameter = rep(c("mu", "sigma"), each = K),
truth = 1:(2*K),
estimate = 1:(2*K) + rnorm(4*K)
)
estimator_labels <- c("Estimator 1" = expression(hat(theta)[1]("·")),
"Estimator 2" = expression(hat(theta)[2]("·")))
parameter_labels <- c("mu" = expression(mu), "sigma" = expression(sigma))
plotestimates(df, parameter_labels = parameter_labels, estimator_labels)
expect_equal(1, 1)
})
test_that("plotdistribution() is working", {
# Single parameter:
estimators <- c("Estimator 1", "Estimator 2")
df <- data.frame(
estimator = estimators, truth = 0, parameter = "mu",
estimate = rnorm(2*50),
replicate = rep(1:50, each = 2)
)
parameter_labels <- c("mu" = expression(mu))
estimator_labels <- c("Estimator 1" = expression(hat(theta)[1]("·")),
"Estimator 2" = expression(hat(theta)[2]("·")))
plotdistribution(df, parameter_labels = parameter_labels, estimator_labels = estimator_labels)
plotdistribution(df, parameter_labels = parameter_labels, type = "density")
# Two parameters:
df <- rbind(df, data.frame(
estimator = estimators, truth = 1, parameter = "sigma",
estimate = rgamma(2*50, shape = 1, rate = 1),
replicate = rep(1:50, each = 2)
))
parameter_labels <- c(parameter_labels, "sigma" = expression(sigma))
plotdistribution(df, return_list = TRUE)
plotdistribution(df, parameter_labels = parameter_labels)
plotdistribution(df, parameter_labels = parameter_labels, flip = TRUE)
plotdistribution(df, parameter_labels = parameter_labels, flip = TRUE, return_list = TRUE)
plotdistribution(df, parameter_labels = parameter_labels, type = "density")
plotdistribution(df, parameter_labels = parameter_labels, type = "scatter")
# Three parameters:
df <- rbind(df, data.frame(
estimator = estimators, truth = 0.25, parameter = "alpha",
estimate = 0.5 * runif(2*50),
replicate = rep(1:50, each = 2)
))
parameter_labels <- c(parameter_labels, "alpha" = expression(alpha))
plotdistribution(df, parameter_labels = parameter_labels)
plotdistribution(df, parameter_labels = parameter_labels, type = "density")
plotdistribution(df, parameter_labels = parameter_labels, type = "scatter")
plotdistribution(df, parameter_labels = parameter_labels, type = "scatter", pairs = TRUE)
plotdistribution(df, parameter_labels = parameter_labels, type = "scatter", pairs = TRUE, legend = FALSE)
# Pairs plot with user-specified plots in the upper triangle:
upper_triangle_plots <- lapply(1:3, function(i) {
x = rnorm(10)
y = rnorm(10)
shape = sample(c("Class 1", "Class 2"), 10, replace = TRUE)
ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = x, y = y, shape = shape)) +
ggplot2::labs(shape = "") +
ggplot2::theme_bw()
})
plotdistribution(df, parameter_labels = parameter_labels, type = "scatter", pairs = TRUE, upper_triangle_plots = upper_triangle_plots)
expect_equal(1, 1)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.