plot.OBsProb | R Documentation |
Method Function for plotting marginal factor posterior probabilities from Objective Bayesian Design.
## S3 method for class 'OBsProb'
plot(x, code = TRUE, prt = FALSE, cex.axis=par("cex.axis"), ...)
x |
list. List of class |
code |
logical. If |
prt |
logical. If |
cex.axis |
Magnification used for the axis annotation.
See |
... |
additional graphical parameters passed to |
A spike plot, similar to barplots, is produced with a spike for each factor.
Marginal posterior probabilities are used for the vertical axis.
If code=TRUE
, X1
, X2
, ... are used to label the factors
otherwise the original factor names are used.
If prt=TRUE
, the print.OBsProb
function is called
and the marginal posterior probabilities are displayed.
The function is called for its side effects. It returns an invisible
NULL
.
Marta Nai Ruscone.
Box, G. E. P. and Meyer R. D. (1986) An Analysis of Unreplicated Fractional Factorials., Technometrics 28(1), 11–18. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.1986.10488093")}.
Box, G. E. P. and Meyer, R. D. (1993) Finding the Active Factors in Fractionated Screening Experiments., Journal of Quality Technology 25(2), 94–105. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00224065.1993.11979432")}.
Consonni, G. and Deldossi, L. (2016) Objective Bayesian Model Discrimination in Follow-up design., Test 25(3), 397–412. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11749-015-0461-3")}.
OBsProb
, print.OBsProb
, summary.OBsProb
.
library(OBsMD)
data(OBsMD.es5, package="OBsMD")
X <- as.matrix(OBsMD.es5[,1:5])
y <- OBsMD.es5[,6]
# Using for model prior probability a Beta with parameters a=1 b=1
es5.OBsProb <- OBsProb(X=X,y=y, abeta=1, bbeta=1, blk=0,mFac=5,mInt=2,nTop=32)
print(es5.OBsProb)
summary(es5.OBsProb)
plot(es5.OBsProb)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.