| plot.OBsProb | R Documentation |
Method Function for plotting marginal factor posterior probabilities from Objective Bayesian Design.
## S3 method for class 'OBsProb'
plot(x, code = TRUE, prt = FALSE, cex.axis=par("cex.axis"), ...)
x |
list. List of class |
code |
logical. If |
prt |
logical. If |
cex.axis |
Magnification used for the axis annotation.
See |
... |
additional graphical parameters passed to |
A spike plot, similar to barplots, is produced with a spike for each factor.
Marginal posterior probabilities are used for the vertical axis.
If code=TRUE, X1, X2, ... are used to label the factors
otherwise the original factor names are used.
If prt=TRUE, the print.OBsProb function is called
and the marginal posterior probabilities are displayed.
The function is called for its side effects. It returns an invisible
NULL.
Marta Nai Ruscone.
Box, G. E. P. and Meyer R. D. (1986) An Analysis of Unreplicated Fractional Factorials., Technometrics 28(1), 11–18. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.1986.10488093")}.
Box, G. E. P. and Meyer, R. D. (1993) Finding the Active Factors in Fractionated Screening Experiments., Journal of Quality Technology 25(2), 94–105. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00224065.1993.11979432")}.
Consonni, G. and Deldossi, L. (2016) Objective Bayesian Model Discrimination in Follow-up design., Test 25(3), 397–412. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11749-015-0461-3")}.
OBsProb, print.OBsProb, summary.OBsProb.
library(OBsMD)
data(OBsMD.es5, package="OBsMD")
X <- as.matrix(OBsMD.es5[,1:5])
y <- OBsMD.es5[,6]
# Using for model prior probability a Beta with parameters a=1 b=1
es5.OBsProb <- OBsProb(X=X,y=y, abeta=1, bbeta=1, blk=0,mFac=5,mInt=2,nTop=32)
print(es5.OBsProb)
summary(es5.OBsProb)
plot(es5.OBsProb)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.