summary.OMD: Summary of Optimal OMD Follow-Up Experiments

summary.OMDR Documentation

Summary of Optimal OMD Follow-Up Experiments

Description

Reduced printing method for lists of class OMD. It displays the best extra-runs according to the OMD criterion together with the correspondent OMD value.

Usage

    ## S3 method for class 'OMD'
summary(object, digits = 3, verbose=FALSE, ...)

Arguments

object

list of OMD class. Output list of OMD function.

digits

integer. Significant digits to use in the print out.

verbose

logical. If TRUE, the unclass-ed object is displayed.

...

additional arguments passed to summary generic function.

Value

It prints out the marginal factors and models posterior probabilities and the top OMD follow-up experiments with their corresponding OMD statistic.

Author(s)

Marta Nai Ruscone.

References

Box, G. E. P. and Meyer, R. D. (1993) Finding the Active Factors in Fractionated Screening Experiments., Journal of Quality Technology 25(2), 94–105. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00224065.1993.11979432")}.

Consonni, G. and Deldossi, L. (2016) Objective Bayesian Model Discrimination in Follow-up design., Test 25(3), 397–412. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11749-015-0461-3")}.

Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996) Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)., Technometrics 38(4), 303–332. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/1271297")}.

See Also

print.OMD and OMD

Examples

library(OBsMD)
data(OBsMD.es5, package="OBsMD")
X <- as.matrix(OBsMD.es5[,1:5])
y <- OBsMD.es5[,6]
es5.OBsProb <- OBsProb(X=X,y=y,blk=0,mFac=5,mInt=2,nTop=32)
nMod <- 26
Xcand <- matrix(c(-1,	-1,	-1, -1,	-1,
1,	-1,	-1,	-1,	-1,
-1,	1,	-1,	-1,	-1,
1,	1,	-1,	-1,	-1,
-1,	-1,	1,	-1,	-1,
1,	-1,	1,	-1,	-1,
-1,	1,	1,	-1,	-1,
1,	1,	1,	-1,	-1,
-1,	-1,	-1,	1,	-1,
1,	-1,	-1,	1,	-1,
-1,	1,	-1,	1,	-1,
1,	1,	-1,	1,	-1,
-1,	-1,	1,	1,	-1,
1,	-1,	1,	1,	-1,
-1,	1,	1,	1,	-1,
1,	1,	1,	1,	-1,
-1,	-1,	-1,	-1,	1,
1,	-1,	-1,	-1,	1,
-1,	1,	-1,	-1,	1,
1,	1,	-1,	-1,	1,
-1,	-1,	1,	-1,	1,
1,	-1,	1,	-1,	1,
-1,	1,	1,	-1,	1,
1,	1,	1,	-1,	1,
-1,	-1,	-1,	1,	1,
1,	-1,	-1,	1,	1,
-1,	1,	-1,	1,	1,
1,	1,	-1,	1,	1,
-1,	-1,	1,	1,	1,
1,	-1,	1,	1,	1,
-1,	1,	1,	1,	1,
1,	1,	1,	1,	1
),nrow=32,ncol=5,dimnames=list(1:32,c("A","B","C","D","E")),byrow=TRUE)
p_omd <- OMD(OBsProb=es5.OBsProb,nFac=5,nBlk=0,nMod=26,
nFoll=4,Xcand=Xcand,mIter=20,nStart=25,startDes=NULL,
top=30)
summary(p_omd)

OBsMD documentation built on Sept. 11, 2024, 6:57 p.m.