print.OMD: Print Optimal OMD Follow-Up Experiments

print.OMDR Documentation

Print Optimal OMD Follow-Up Experiments

Description

Printing method for lists of class OMD. It displays the best extra-runs according to the OMD criterion together with the correspondent OMD values.

Usage

    ## S3 method for class 'OMD'
print(x, X = FALSE, resp = FALSE, Xcand = TRUE, models = TRUE, nMod = x$nMod,
            digits = 3, verbose=FALSE, ...)

Arguments

x

list of class OMD. Output list of the OMD function.

X

logical. If TRUE, the initial design matrix is printed.

resp

logical If TRUE, the response vector of initial design is printed.

Xcand

logical. If TRUE, prints the candidate runs.

models

logical. Competing models are printed if TRUE.

nMod

integer. Top models to print.

digits

integer. Significant digits to use in the print out.

verbose

logical. If TRUE, the unclass-ed x is displayed.

...

additional arguments passed to print generic function.

Value

The function is mainly called for its side effects. Prints out the selected components of the class OMD objects, output of the OMD function. For example the marginal factors and models posterior probabilities and the top OMD follow-up experiments with their corresponding OMD statistic. It returns invisible list with the components:

calc

Numeric vector with basic calculation information.

models

Data frame with the competing models posterior probabilities.

follow-up

Data frame with the runs for follow-up experiments and their corresponding OMD statistic.

Author(s)

Marta Nai Ruscone.

References

Box, G. E. P. and Meyer, R. D. (1993) Finding the Active Factors in Fractionated Screening Experiments., Journal of Quality Technology 25(2), 94–105. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00224065.1993.11979432")}.

Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996) Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)., Technometrics 38(4), 303–332. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/1271297")}.

See Also

OMD, OBsProb

Examples

library(OBsMD)
data(OBsMD.es5, package="OBsMD")
X <- as.matrix(OBsMD.es5[,1:5])
y <- OBsMD.es5[,6]
es5.OBsProb <- OBsProb(X=X,y=y,blk=0,mFac=5,mInt=2,nTop=32)
nMod <- 26
Xcand <- matrix(c(-1,	-1,	-1, -1,	-1,
1,	-1,	-1,	-1,	-1,
-1,	1,	-1,	-1,	-1,
1,	1,	-1,	-1,	-1,
-1,	-1,	1,	-1,	-1,
1,	-1,	1,	-1,	-1,
-1,	1,	1,	-1,	-1,
1,	1,	1,	-1,	-1,
-1,	-1,	-1,	1,	-1,
1,	-1,	-1,	1,	-1,
-1,	1,	-1,	1,	-1,
1,	1,	-1,	1,	-1,
-1,	-1,	1,	1,	-1,
1,	-1,	1,	1,	-1,
-1,	1,	1,	1,	-1,
1,	1,	1,	1,	-1,
-1,	-1,	-1,	-1,	1,
1,	-1,	-1,	-1,	1,
-1,	1,	-1,	-1,	1,
1,	1,	-1,	-1,	1,
-1,	-1,	1,	-1,	1,
1,	-1,	1,	-1,	1,
-1,	1,	1,	-1,	1,
1,	1,	1,	-1,	1,
-1,	-1,	-1,	1,	1,
1,	-1,	-1,	1,	1,
-1,	1,	-1,	1,	1,
1,	1,	-1,	1,	1,
-1,	-1,	1,	1,	1,
1,	-1,	1,	1,	1,
-1,	1,	1,	1,	1,
1,	1,	1,	1,	1
),nrow=32,ncol=5,dimnames=list(1:32,c("A","B","C","D","E")),byrow=TRUE)
p_omd <- OMD(OBsProb=es5.OBsProb,nFac=5,nBlk=0,nMod=26,
nFoll=4,Xcand=Xcand,mIter=20,nStart=25,startDes=NULL,
top=30)
print(p_omd)

OBsMD documentation built on Sept. 11, 2024, 6:57 p.m.