Nothing
#' Fisher optimal partition
#'
#' The Fisher optimal partition algorithm.
#'
#' @param X A set of samples.
#' @param k Number of classes.
#' @param C Statistic from the output of [dlc()].
#'
#' @return Index vector for each sample's classification.
#'
#' @export FOP
#'
#' @references
#' W. D. Fisher (1958). On grouping for maximum homogeneity.
#' _Journal of the American Statistical Association_,
#' vol. 53, pp. 789--798.
#'
#' @examples
#' X <- matrix(c(
#' 9.3, 1.8, 1.9, 1.7, 1.5, 1.3,
#' 1.4, 2.0, 1.9, 2.3, 2.1
#' ))
#' C <- dlc(X, maxk = 8)$C
#' F <- FOP(X, 8, C)
FOP <- function(X, k, C) {
n <- dim(X)[1]
if (k == 1) {
idx <- rep(1, n)
} else {
breaks <- rep(0, k)
breaks[1] <- 1
breaks[k] <- C[n - 1, k - 1]
idx <- rep(1, n)
idx[breaks[k]:n] <- k
if (k > 2) {
for (flag in (k - 1):2) {
breaks[flag] <- C[breaks[flag + 1] - 2, flag - 1]
idx[breaks[flag]:(breaks[flag + 1] - 1)] <- flag
}
}
}
idx
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.