Nothing
function.ValueNPV <-
function(data, marker, status, tag.healthy = 0, direction = c("<", ">"), control = control.cutpoints(), pop.prev, ci.fit = FALSE, conf.level = 0.95, measures.acc){
direction <- match.arg(direction)
if (control$valueNPV < 0 || control$valueNPV > 1) {
stop("You have entered an invalid value for Negative Predictive Value. \n The value for Negative Predictive Value must be between 0 and 1.", call. = FALSE)
}
if (control$valueNPV == 0) {
warning("You have entered the minimum possible value for Negative Predictive Value. \n Please check this value.", call. = FALSE, immediate. = TRUE)
}
if (control$valueNPV == 1) {
warning("You have entered the maximum possible value for Negative Predictive Value. \n Please check this value.", call. = FALSE, immediate. = TRUE)
}
index.cutpoints <- which(round(measures.acc$NPV[,1],10) == round(control$valueNPV,10))
if (length(index.cutpoints)== 0) {
warning("There is no cutpoint that yields the exact Negative Predictive Value designated. The cutpoint having the closest value to the designated Negative Predictive Value has therefore been selected.", call. = FALSE, immediate. = TRUE)
difference <- abs(control$valueNPV-measures.acc$NPV[,1])
index.cutpoints <- which(round(difference,10) == round(min(difference,na.rm=TRUE),10))
}
if (length(index.cutpoints)!= 0) {
if (length(index.cutpoints)== 1) {
cvalueNPV <- measures.acc$cutoffs[index.cutpoints]
}
if (length(index.cutpoints)!= 1) {
cutpoints <- measures.acc$cutoffs[index.cutpoints]
PPVnew <- obtain.optimal.measures(cutpoints, measures.acc)$PPV
cutpointsPPVnew <- cutpoints[which(round(PPVnew[,1],10) == round(max(PPVnew[,1],na.rm=TRUE),10))]
cvalueNPV <- cutpointsPPVnew
}
}
optimal.cutoff <- obtain.optimal.measures(cvalueNPV, measures.acc)
res <- list(measures.acc = measures.acc, optimal.cutoff = optimal.cutoff)
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.