Description Usage Arguments Details Value References See Also Examples

The adaptive pairwise fusion penalty (APFP) was proposed by Guo (2010). Under the framework of the model-based clustering, APFP aims to identify the pairwise informative variables for clustering high-dimenisonal data.

1 2 3 4 5 6 | ```
apfp(tuning, K = NULL, lambda = NULL, y, N = 100, kms.iter = 100, kms.nstart = 100,
adapt.kms = FALSE, eps.diff = 1e-5, eps.em = 1e-5,
iter.LQA = 20, eps.LQA = 1e-5, model.crit = 'gic')
apfp(tuning = NULL, K, lambda, y, N = 100, kms.iter = 100, kms.nstart = 100,
adapt.kms = FALSE, eps.diff = 1e-5, eps.em = 1e-5,
iter.LQA = 20, eps.LQA = 1e-5, model.crit = 'gic')
``` |

`tuning` |
A 2-dimensional vector or a matrix with 2 columns, the first column is the number of clusters |

`K` |
The number of clusters |

`lambda` |
The tuning parameter |

`y` |
A p-dimensional data matrix. Each row is an observation. |

`N` |
The maximum number of iterations in the EM algorithm. The default value is 100. |

`kms.iter` |
The maximum number of iterations in kmeans algorithm for generating the starting value for the EM algorithm. |

`kms.nstart` |
The number of starting values in K-means. |

`adapt.kms` |
A indicator of using the cluster means estimated by K-means to calculate the adaptive parameters in APFP. The default value is FALSE. |

`eps.diff` |
The lower bound of pairwise difference of two mean values. Any value lower than it is treated as 0. |

`eps.em` |
The lower bound for the stopping criterion in the EM algorithm. |

`iter.LQA` |
The number of iterations in the estimation of cluster means by using the local quadratic approximation (LQA). |

`eps.LQA` |
The lower bound for the stopping criterion in the estimation of cluster means. |

`model.crit` |
The criterion used to select the number of clusters |

The j-th variable is defined as pairwise informative for a pair of clusters *C_k* and *C_{k'}* if *μ_{kj} \neq μ_{k'j}*. Also, a variable is globally informative if it is pairwise informative for at least one pair of clusters. Here we assume that each cluster has the same diagonal variance in the model-based clustering. APFP is in the following form,

*∑_{j=1}^d ∑_{k<k'}τ_{kk'j}|μ_{kj} - μ_{k'j}|,*

where *d* is the number of variables in the data, *τ_{kk'j} = |\tilde{μ}_{kj} - \tilde{μ}_{k'j}|^{-1}* is the adaptive parameters. Here we provide two choices for *\tilde{μ_{kj}}*. If `adapt.kms == TRUE`

, *\tilde{μ}_{kj}* is the estimates from the K-mean algorithm; otherwise, *\tilde{μ}_{kj}* is the estimates from the model-based clustering without penalty.

The estimation uses the EM algorithm. Since the EM algorithm depends on the starting values. We use the estimates from K-means with multiple starting points as the starting values. For estimating the cluster means, APFP uses the local quadratic approximation.

This function returns the esimated parameters and some statistics of the optimal model within the given *K* and *λ*, which is selected by BIC when `model.crit = 'bic'`

or GIC when `model.crit = 'gic'`

.

`mu.hat.best` |
The estimated cluster means in the optimal model |

`sigma.hat.best` |
The estimated covariance in the optimal model |

`p.hat.best` |
The estimated cluster proportions in the optimal model |

`s.hat.best` |
The clustering assignments using the optimal model |

`lambda.best` |
The value of |

`K.best` |
The value of |

`llh.best` |
The log-likelihood of the optimal model |

`gic.best` |
The GIC of the optimal model |

`bic.best` |
The BIC of the optimal model |

`ct.mu.best` |
The degrees of freedom in the cluster means of the optimal model |

Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2010) Pairwise variable selection for high-dimensional model-based clustering. *Biometrics* **66(3)**, 793–804.

1 2 3 |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.