Nothing
GetLikelihoodFunction=function(Kernels_list,ListOfLikelihoods){
PDFs_funs = list()
d = length(Kernels_list)
class_len = ncol(Kernels_list[[1]])
for (i in 1:d) {
c_pdf = list()
c_kernel = list()
c_theta = list()
funs = list()
KernelsMat = Kernels_list[[i]]
LL = ListOfLikelihoods[[i]]
for (cc in 1:class_len) {
Kernels = KernelsMat[, cc]
pdf = LL[, cc]
if(sum(is.finite(pdf))>2 &sum(is.finite(Kernels))>2){
smoothX = seq(
from = min(Kernels,na.rm=T),
to = max(Kernels,na.rm=T),
length.out = 1000
)
Fun=stats::splinefun(x = Kernels, y = pdf,method="monoH.FC", ties = "ordered")
}else{
mm=min(Kernels,na.rm=T)
nn=max(Kernels,na.rm = T)
if(!is.finite(mm)) mm=0
if(!is.finite(nn)) nn=1
Fun=stats::approxfun(x = c(mm,nn), y = c(0,0),rule = 2, ties = "ordered")
}
funs[[cc]] = Fun
#alles ist in reihenfolge der klassen anzuordnen!
}
PDFs_funs[[i]] = funs
}#end for each class
PDFs_funs[[i]] = funs
return(PDFs_funs)
}#GetLikelihoodFunction
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.