View source: R/kwAllPairsNemenyiTest.R
kwAllPairsNemenyiTest | R Documentation |
Performs Nemenyi's non-parametric all-pairs comparison test for Kruskal-type ranked data.
kwAllPairsNemenyiTest(x, ...)
## Default S3 method:
kwAllPairsNemenyiTest(x, g, dist = c("Tukey", "Chisquare"), ...)
## S3 method for class 'formula'
kwAllPairsNemenyiTest(
formula,
data,
subset,
na.action,
dist = c("Tukey", "Chisquare"),
...
)
x |
a numeric vector of data values, or a list of numeric data vectors. |
... |
further arguments to be passed to or from methods. |
g |
a vector or factor object giving the group for the
corresponding elements of |
dist |
the distribution for determining the p-value.
Defaults to |
formula |
a formula of the form |
data |
an optional matrix or data frame (or similar: see
|
subset |
an optional vector specifying a subset of observations to be used. |
na.action |
a function which indicates what should happen when
the data contain |
For all-pairs comparisons in an one-factorial layout
with non-normally distributed residuals Nemenyi's non-parametric test
can be performed. A total of m = k(k-1)/2
hypotheses can be tested. The null hypothesis
H_{ij}: \theta_i(x) = \theta_j(x)
is tested in the two-tailed test
against the alternative
A_{ij}: \theta_i(x) \ne \theta_j(x), ~~ i \ne j
.
Let R_{ij}
be the rank of X_{ij}
,
where X_{ij}
is jointly ranked
from \left\{1, 2, \ldots, N \right\}, ~~ N = \sum_{i=1}^k n_i
,
then the test statistic under the absence of ties is calculated as
t_{ij} = \frac{\bar{R}_j - \bar{R}_i}
{\sigma_R \left(1/n_i + 1/n_j\right)^{1/2}} \qquad \left(i \ne j\right),
with \bar{R}_j, \bar{R}_i
the mean rank of the
i
-th and j
-th group and the expected variance as
\sigma_R^2 = N \left(N + 1\right) / 12.
A pairwise difference is significant, if |t_{ij}|/\sqrt{2} > q_{kv}
,
with k
the number of groups and v = \infty
the degree of freedom.
Sachs(1997) has given a modified approach for
Nemenyi's test in the presence of ties for N > 6, k > 4
provided that the kruskalTest
indicates significance:
In the presence of ties, the test statistic is
corrected according to \hat{t}_{ij} = t_{ij} / C
, with
C = 1 - \frac{\sum_{i=1}^r t_i^3 - t_i}{N^3 - N}.
The function provides two different dist
for p
-value estimation:
The p
-values are computed from the studentized
range distribution (alias Tukey
),
\mathrm{Pr} \left\{ t_{ij} \sqrt{2} \ge q_{k\infty\alpha} | mathrm{H} \right\} = \alpha
.
The p
-values are computed from the
Chisquare
distribution with v = k - 1
degree
of freedom.
A list with class "PMCMR"
containing the following components:
a character string indicating what type of test was performed.
a character string giving the name(s) of the data.
lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
lower-triangle matrix of the p-values for the pairwise tests.
a character string describing the alternative hypothesis.
a character string describing the method for p-value adjustment.
a data frame of the input data.
a string that denotes the test distribution.
Nemenyi, P. (1963) Distribution-free Multiple Comparisons. Ph.D. thesis, Princeton University.
Sachs, L. (1997) Angewandte Statistik. Berlin: Springer.
Wilcoxon, F., Wilcox, R. A. (1964) Some rapid approximate statistical procedures. Pearl River: Lederle Laboratories.
Tukey
, Chisquare
,
p.adjust
, kruskalTest
,
kwAllPairsDunnTest
, kwAllPairsConoverTest
## Data set InsectSprays
## Global test
kruskalTest(count ~ spray, data = InsectSprays)
## Conover's all-pairs comparison test
## single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays,
p.adjust.method = "single-step")
summary(ans)
## Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays,
p.adjust.method = "bonferroni")
summary(ans)
## Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.