leTest: Testing against Ordered Alternatives (Le's Test)

View source: R/leTest.R

leTestR Documentation

Testing against Ordered Alternatives (Le's Test)

Description

Performs Le's test for testing against ordered alternatives.

Usage

leTest(x, ...)

## Default S3 method:
leTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

## S3 method for class 'formula'
leTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative

the alternative hypothesis. Defaults to "two.sided".

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, H_0: \theta_1 = \theta_2 = \ldots = \theta_k is tested against a simple order hypothesis, H_\mathrm{A}: \theta_1 \le \theta_2 \le \ldots \le \theta_k,~\theta_1 < \theta_k.

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

the estimated quantile of the test statistic.

p.value

the p-value for the test.

parameter

the parameters of the test statistic, if any.

alternative

a character string describing the alternative hypothesis.

estimates

the estimates, if any.

null.value

the estimate under the null hypothesis, if any.

Note

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers {0, 1, 2, ..., k} or letters {a, b, c, ...}. Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

References

Le, C. T. (1988) A new rank test against ordered alternatives in k-sample problems, Biometrical Journal 30, 87–92.

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
       110, 125, 143, 148, 151,
       136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)


PMCMRplus documentation built on May 29, 2024, 8:34 a.m.