shanTest: Testing against Ordered Alternatives (Shan-Young-Kang Test)

View source: R/shanTest.R

shanTestR Documentation

Testing against Ordered Alternatives (Shan-Young-Kang Test)

Description

Performs the Shan-Young-Kang test for testing against ordered alternatives.

Usage

shanTest(x, ...)

## Default S3 method:
shanTest(x, g, alternative = c("greater", "less"), ...)

## S3 method for class 'formula'
shanTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("greater", "less"),
  ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative

the alternative hypothesis. Defaults to "greater".

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, H_0: \theta_1 = \theta_2 = \ldots = \theta_k is tested against a simple order hypothesis, H_\mathrm{A}: \theta_1 \le \theta_2 \le \ldots \le \theta_k,~\theta_1 < \theta_k.

Let R_{ij} be the rank of X_{ij}, where X_{ij} is jointly ranked from \left\{1, 2, \ldots, N \right\}, ~~ N = \sum_{i=1}^k n_i, the the test statistic is

S = \sum_{i = 1}^{k-1} \sum_{j = i + 1}^k D_{ij},

with

D_{ij} = \sum_{l = 1}^{n_i} \sum_{m=1}^{n_j} \left(R_{jm} - R_{il} \right)~ \mathrm{I}\left(X_{jm} > X_{il} \right),

where

\mathrm{I}(u) = \left\{ \begin{array}{c} 1, \qquad \forall~ u > 0 \\ 0, \qquad \forall~ u \le 0 \end{array} \right. .

The test statistic is asymptotically normal distributed:

z = \frac{S - \mu_{\mathrm{S}}}{\sqrt{s^2_{\mathrm{S}}}}

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

the estimated quantile of the test statistic.

p.value

the p-value for the test.

parameter

the parameters of the test statistic, if any.

alternative

a character string describing the alternative hypothesis.

estimates

the estimates, if any.

null.value

the estimate under the null hypothesis, if any.

Note

The variance estimation (see Theorem 2.1, Shan et al. 2014) can become negative for certain combinations of N,~n_i,~k \qquad (1 \le i \le k). In these cases the function will return a warning and the returned p-value will be NaN.

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers {0, 1, 2, ..., k} or letters {a, b, c, ...}. Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

References

Shan, G., Young, D., Kang, L. (2014) A New Powerful Nonparametric Rank Test for Ordered Alternative Problem. PLOS ONE 9, e112924. https://doi.org/10.1371/journal.pone.0112924

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
       110, 125, 143, 148, 151,
       136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)


PMCMRplus documentation built on May 29, 2024, 8:34 a.m.