Synthetic.4-data: Synthetic Dataset #4: p > n case

Description

Dataset from simulated regression survival model #4 as described in Dazard et al. (2015). Here, the regression function uses 1/10 of informative predictors in a p > n situation with p = 1000 and n = 100. The rest represents non-informative noisy covariates, which are not part of the design matrix. Survival time was generated from an exponential model with rate parameter λ (and mean \frac{1}{λ}) according to a Cox-PH model with hazard exp(eta), where eta(.) is the regression function. Censoring indicator were generated from a uniform distribution on [0, 2]. In this synthetic example, all covariates are continuous, i.i.d. from a multivariate standard normal distribution.

Usage

1

Format

Each dataset consists of a numeric matrix containing n=100 observations (samples) by rows and p=1000 variables by columns, not including the censoring indicator and (censored) time-to-event variables. It comes as a compressed Rda data file.

Author(s)

Maintainer: "Jean-Eudes Dazard, Ph.D." jxd101@case.edu

Acknowledgments: This project was partially funded by the National Institutes of Health NIH - National Cancer Institute (R01-CA160593) to J-E. Dazard and J.S. Rao.

Source

See simulated survival model #4 in Dazard et al., 2015.

References


Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.