Nothing
#=====================================================================================================
#' @title A function that checks the parallel computation for missing data of MLR model.
#'
#' @param block : The number of blocks for data cutting.
#' @param outputDirectory : The directory of output files.
#'
#' @return NULL
#' @export Insepect_MLR
#'
#' @importFrom raster raster
#' @importFrom methods as
#'
#' @examples
#' \donttest{
#' Insepect_MLR(30, "./MlrOutput")
#' }
#'
Insepect_MLR <- function(block, outputDirectory) {
name.x.temp <- NULL
alldata <- NULL
if(block == 1) {
print("* Without parallel computing, the data is always intact *")
return(-1)
}
for(idx in 1: block) {
fileAddress <- paste(outputDirectory, "/variable.quantile_mlr_all_", idx, ".tif", sep = "")
if(file.exists(fileAddress)) {
print(fileAddress)
fileRaster <- raster(fileAddress, header=FALSE)
dfRaster <- as(fileRaster,"SpatialPointsDataFrame")
allRaster <- data.frame(dfRaster)
name.x.temp <- data.frame(allRaster)
if(is.null(alldata)) {
alldata = name.x.temp
}else {
names(alldata) = names(name.x.temp)
alldata = rbind(alldata,name.x.temp)
}
}
}
myaddress1 <- paste(outputDirectory, "/variable.quantile_mlr_all", ".tif", sep = "")
alldata1 <- raster(myaddress1, header = FALSE)
alldata1 <- as(alldata1, "SpatialPointsDataFrame")
alldata1 <- data.frame(alldata1)
# ============== check =================
# Deep random number, loop traversal comparison operation
mynrows <- nrow(alldata)
xnums <- sample(1: mynrows, floor(mynrows * 0.3))
flag <- TRUE
for(i in 1: length(xnums)) {
for(j in 1: 3) {
if(!is.na(alldata[xnums[i], j] != alldata1[xnums[i], j])) {
if(alldata[xnums[i], j] != alldata1[xnums[i], j]) {
flag <- FALSE
}
} else {
flag <- FALSE
}
}
}
if(flag) {
print("* Data integrity. *")
} else {
print("* Data is missing. The file path is as follows: *")
print(fileAddress)
print(myaddress1)
}
}
#=====================================================================================================
#' @title A function that checks the parallel computation for missing data of RF model.
#'
#' @param block : The number of blocks for data cutting.
#' @param outputDirectory : The directory of output files.
#'
#' @return NULL
#' @export Insepect_RF
#'
#' @importFrom raster raster
#' @importFrom methods as
#'
#' @examples
#' \donttest{
#' Insepect_RF(30, "./RfOutput")
#' }
#'
Insepect_RF <- function(block, outputDirectory) {
if(block == 1) {
print("* Without parallel computing, the data is always intact *")
return(-1)
}
name.x.temp <- NULL
alldata <- NULL
for(idx in 1: block) {
fileAddress <- paste(outputDirectory, "/variable.quantile_rf_all", "_", idx, ".tif", sep = "")
if(file.exists(fileAddress)) {
print(fileAddress)
fileRaster <- raster(fileAddress, header=FALSE)
dfRaster <- as(fileRaster,"SpatialPointsDataFrame")
allRaster <- data.frame(dfRaster)
name.x.temp <- data.frame(allRaster)
if(is.null(alldata)) {
alldata = name.x.temp
}else {
names(alldata) = names(name.x.temp)
alldata = rbind(alldata,name.x.temp)
}
}
}
myaddress1 <- paste(outputDirectory, "/variable.quantile_rf_all", ".tif", sep = "")
alldata1 <- raster(myaddress1, header = FALSE)
alldata1 <- as(alldata1, "SpatialPointsDataFrame")
alldata1 <- data.frame(alldata1)
# ============== check =================
# Deep random number, loop traversal comparison operation
mynrows <- nrow(alldata)
xnums <- sample(1: mynrows, floor(mynrows * 0.3))
flag <- TRUE
for(i in 1: length(xnums)) {
for(j in 1: 3) {
if(!is.na(alldata[xnums[i], j] != alldata1[xnums[i], j])) {
if(alldata[xnums[i], j] != alldata1[xnums[i], j]) {
flag <- FALSE
}
} else {
flag <- FALSE
}
}
}
if(flag) {
print("* Data integrity. *")
} else {
print("* Data is missing. The file path is as follows: *")
print(fileAddress)
print(myaddress1)
}
}
#=====================================================================================================
#' @title A function that checks the parallel computation for missing data of QRF model.
#'
#' @param block : The number of blocks for data cutting.
#' @param outputDirectory : The directory of output files.
#'
#' @return NULL
#' @export Insepect_QRF
#'
#' @importFrom raster raster
#' @importFrom methods as
#'
#' @examples
#' \donttest{
#' Insepect_QRF(30, "./QrfOutput")
#' }
#'
Insepect_QRF <- function(block, outputDirectory) {
if(block == 1) {
print("* Without parallel computing, the data is always intact *")
return(-1)
}
# Init Variables
name.x.temp <- NULL
alldata <- NULL
fragList <- c('05', '50', '95')
for (i in 1: length(fragList)) {
for(idx in 1: block) {
fileAddress <- paste(outputDirectory, "/variable.quantile",fragList[i],"_", idx, ".tif", sep = "")
print(fileAddress)
if(file.exists(fileAddress)) {
print(fileAddress)
fileRaster <- raster(fileAddress, header=FALSE)
dfRaster <- as(fileRaster,"SpatialPointsDataFrame")
allRaster <- data.frame(dfRaster)
name.x.temp <- data.frame(allRaster)
if(is.null(alldata)) {
alldata = name.x.temp
}else {
names(alldata) = names(name.x.temp)
alldata = rbind(alldata,name.x.temp)
}
}
} # for end
# Read the total data set
myaddress1 <- paste(outputDirectory, "/variable.quantile", fragList[i], "_all.tif", sep = "")
alldata1 <- raster(myaddress1, header = FALSE)
alldata1 <- as(alldata1, "SpatialPointsDataFrame")
alldata1 <- data.frame(alldata1)
# ============== check =================
# Deep random number, loop traversal comparison operation
mynrows <- nrow(alldata)
xnums <- sample(1: mynrows, floor(mynrows * 0.3))
flag <- TRUE
for(i in 1: length(xnums)) {
for(j in 1: 3) {
if(!is.na(alldata[xnums[i], j] != alldata1[xnums[i], j])) {
if(alldata[xnums[i], j] != alldata1[xnums[i], j]) {
flag <- FALSE
}
} else {
flag <- FALSE
}
}
}
if(flag) {
print("* Data integrity. *")
} else {
print("* Data is missing. The file path is as follows: *")
print(fileAddress)
print(myaddress1)
}
} # for end
}
#=====================================================================================================
#' @title A function that checks the parallel computation for missing data
#'
#' @param model : The models were selected, including QRF,RF and MLR.
#' @param block : The number of blocks for data cutting.
#' @param outputDirectory : The directory of output files.
#'
#' @return NULL
#' @export InsepectionVariable
#'
#' @importFrom raster raster
#' @importFrom methods as
#'
#' @examples
#' \donttest{
#' InsepectionVariable(model = "MLR", block = 30, outputDirectory = "MlrOutput")
#' }
#'
#'
#'
InsepectionVariable <- function(model = 'MLR', block, outputDirectory) {
InspectFunc <- NULL
Inspect_Func <- switch(
model,
MLR = Insepect_MLR,
RF = Insepect_RF,
QRF = Insepect_QRF
)
Inspect_Func(block, outputDirectory)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.