Nothing
# Copyright 2021 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if (internet) {
# learningCurve
learningCurve <- PatientLevelPrediction::createLearningCurve(
plpData = plpData,
outcomeId = outcomeId, parallel = FALSE, cores = -1,
modelSettings = setLassoLogisticRegression(),
saveDirectory = file.path(saveLoc, "lcc"),
splitSettings = createDefaultSplitSetting(testFraction = 0.2, nfold = 2),
trainFractions = c(0.6, 0.7),
trainEvents = NULL,
preprocessSettings = createPreprocessSettings(
minFraction = 0.001,
normalize = TRUE
)
)
}
test_that("learningCurve output correct", {
skip_if_offline()
expect_true(is.data.frame(learningCurve))
expect_equal(sum(colnames(learningCurve) %in% c(
"trainFraction",
"Train_AUROC",
"nPredictors",
"Train_populationSize",
"Train_outcomeCount"
)), 5)
expect_equal(learningCurve$trainFraction, c(0.6, 0.7) * 100)
})
test_that("plotLearningCurve", {
skip_if_not_installed("ggplot2")
skip_on_cran()
skip_if_offline()
test <- plotLearningCurve(
learningCurve = learningCurve,
metric = "AUROC"
)
# test the plot works
expect_s3_class(test, "ggplot")
test <- plotLearningCurve(
learningCurve = learningCurve,
metric = "AUPRC"
)
expect_s3_class(test, "ggplot")
test <- plotLearningCurve(
learningCurve = learningCurve,
metric = "sBrier"
)
expect_s3_class(test, "ggplot")
})
test_that("getTrainFractions works", {
skip_if_offline()
learningCurve <- PatientLevelPrediction::createLearningCurve(
plpData = tinyPlpData,
outcomeId = outcomeId, parallel = FALSE, cores = -1,
modelSettings = setLassoLogisticRegression(seed = 42),
saveDirectory = file.path(saveLoc, "lcc"),
splitSettings = createDefaultSplitSetting(
testFraction = 0.33, nfold = 2,
splitSeed = 42
),
trainEvents = c(150, 200),
preprocessSettings = createPreprocessSettings(
minFraction = 0.001,
normalize = TRUE
)
)
expect_true(is.data.frame(learningCurve))
expect_equal(sum(colnames(learningCurve) %in% c(
"trainFraction",
"Train_AUROC",
"nPredictors",
"Train_populationSize",
"Train_outcomeCount"
)), 5)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.