Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning=FALSE,
message=FALSE,
eval = TRUE
)
## -----------------------------------------------------------------------------
library(dplyr)
library(PhenotypeR)
knee_oa <- tibble(cohort_name = "knee_osteoarthritis",
estimate = c("Median age", "Proportion male"),
value = c("60 to 65", "45%"),
source = "Clinician")
knee_replacement <- tibble(cohort_name = "knee_replacement",
estimate = c("Median age", "Proportion male"),
value = c("65 to 70", "50%"),
source = "Clinician")
expectations <- bind_rows(knee_oa, knee_replacement)
## ----warning=FALSE, message=FALSE---------------------------------------------
tableCohortExpectations(expectations)
## -----------------------------------------------------------------------------
tibble(cohort_name = "knee_osteoarthritis",
estimate = c("Commonly seen subsequent procedures"),
value = c("Knee replacement"),
source = "Expert opinion") |>
tableCohortExpectations()
## ----eval=FALSE---------------------------------------------------------------
# usethis::edit_r_environ()
#
# # Add your API in your R environment:
# GEMINI_API_KEY = "your API"
#
# # Restrart R
## ----eval=FALSE---------------------------------------------------------------
# library(ellmer)
#
# chat <- chat("google_gemini")
# llm_expectation <- chat$chat(
# interpolate("What are the typical characteristics we can expect to see in our real-world data for a cohort of people with an ankle sprain (average age, proportion male vs female, subsequent medications, etc)? Be brief and provide summar with a few sentences."))
#
# tibble(cohort_name = "diagnosis_of_ankle_sprain",
# estimate = "General summary",
# value = llm_expectation,
# source = "llm") |>
# tableCohortExpectations()
## ----echo=FALSE---------------------------------------------------------------
readr::read_csv("vignette_phenotype_expectations/expectations_1.csv") |>
tableCohortExpectations()
## ----eval=FALSE---------------------------------------------------------------
# getCohortExpectations(chat = chat,
# phenotypes = c("diagnosis_of_ankle_sprain",
# "diagnosis_of_prostate_cancer",
# "new_user_of_morphine")) |>
# tableCohortExpectations()
## ----echo=FALSE---------------------------------------------------------------
readr::read_csv("vignette_phenotype_expectations/expectations_2.csv") |>
tableCohortExpectations()
## ----eval=FALSE---------------------------------------------------------------
# library(DBI)
# library(duckdb)
# library(CDMConnector)
# library(CohortConstructor)
#
# con <- dbConnect(duckdb(), dbdir = eunomiaDir())
# cdm <- cdmFromCon(
# con = con, cdmSchema = "main", writeSchema = "main", cdmName = "Eunomia"
# )
#
# codes <- list("diagnosis_of_ankle_sprain" = 81151,
# "diagnosis_of_prostate_cancer" = 4163261,
# "new_user_of_morphine" = c(1110410L, 35605858L, 40169988L))
#
# cdm$my_cohort <- conceptCohort(cdm = cdm,
# conceptSet = codes,
# exit = "event_end_date",
# name = "my_cohort")
#
# diag_results <- phenotypeDiagnostics(cdm$my_cohort)
#
# getCohortExpectations(chat = chat,
# phenotypes = diag_results) |>
# tableCohortExpectations()
## ----echo=FALSE---------------------------------------------------------------
readr::read_csv("vignette_phenotype_expectations/expectations_2.csv") |>
tableCohortExpectations()
## ----eval=FALSE---------------------------------------------------------------
# chat <- ellmer::chat("mistral")
# diag_results <- phenotypeDiagnostics(cdm$my_cohort)
# getCohortExpectations(chat = chat,
# phenotypes = diag_results) |>
# tableCohortExpectations()
## ----echo=FALSE---------------------------------------------------------------
readr::read_csv("vignette_phenotype_expectations/expectations_3.csv") |>
tableCohortExpectations()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.