Nothing
plot_c4_aci_fit <- function(
fit_results,
identifier_column_name,
x_name,
plot_operating_point = TRUE,
a_column_name = 'A',
ci_column_name = 'Ci',
pcm_column_name = 'PCm',
...
)
{
if (length(fit_results) != 3 || !is.exdf(fit_results$fits) ||
!is.exdf(fit_results$parameters) || !(is.exdf(fit_results$fits_interpolated))) {
stop('fit_results must be the output from fit_c4_aci')
}
# Make sure the x variable is acceptable
if (!x_name %in% c(ci_column_name, pcm_column_name)) {
stop('The x_name must be the Ci or PCm column name')
}
# Get the appropriate operating point name
operating_x <- if (x_name == ci_column_name) {
'operating_Ci'
} else {
'operating_PCm'
}
# Make sure the required variables are defined and have the correct units
required_variables <- list()
required_variables[[ci_column_name]] <- 'micromol mol^(-1)'
required_variables[[identifier_column_name]] <- NA
required_variables[[pcm_column_name]] <- 'microbar'
# Don't throw an error if some columns are all NA
check_required_variables(fit_results$fits_interpolated, required_variables, check_NA = FALSE)
required_variables[[a_column_name]] <- unit_dictionary('A')
# Don't throw an error if some columns are all NA
check_required_variables(fit_results$fits, required_variables, check_NA = FALSE)
required_variables <- list()
required_variables[['operating_Ci']] <- 'micromol mol^(-1)'
required_variables[['operating_PCm']] <- 'microbar'
required_variables[['operating_An_model']] <- unit_dictionary('A')
# Don't throw an error if some columns are all NA
check_required_variables(fit_results$parameters, required_variables, check_NA = FALSE)
# Choose line settings
assim_cols <- multi_curve_colors()[1:5]
assim_cols[1] <- '#676767'
line_settings <- list(
col = assim_cols,
lwd = c(4, 2, 2, 2, 2),
lty = c(1, 5, 5, 5, 5)
)
# Plot the fits, operating point, and raw data
lattice::xyplot(
An + Apc + Apr + Ar + Aj ~ fit_results$fits_interpolated[, x_name] | fit_results$fits_interpolated[, identifier_column_name],
data = fit_results$fits_interpolated$main_data,
type = 'l',
par.settings = list(superpose.line = line_settings),
auto.key = list(space = 'right', lines = TRUE, points = FALSE),
xlab = paste(x_name, '[', fit_results$fits_interpolated$units[[x_name]], ']'),
ylab = paste(
'Net CO2 assimilation rate [', fit_results$fits_interpolated$units[['An']],
']\n(filled black circles: measured data used for fits',
'\nopen black circles: measured data excluded from fits',
'\nopen red circle: estimated operating point)'
),
curve_ids = fit_results$fits_interpolated[, identifier_column_name],
panel = function(...) {
# Get info about this curve
args <- list(...)
curve_id <- args$curve_ids[args$subscripts][1]
curve_parameters <-
fit_results$parameters[fit_results$parameters[, identifier_column_name] == curve_id, ]
curve_data <-
fit_results$fits[fit_results$fits[, identifier_column_name] == curve_id, ]
used_for_fit <- points_for_fitting(curve_data)
# Plot the fit lines
lattice::panel.xyplot(...)
# Plot the operating point, if desired
if (plot_operating_point) {
lattice::panel.points(
curve_parameters[1, 'operating_An_model'] ~ curve_parameters[1, operating_x],
col = 'red',
pch = 1
)
}
# Plot the measured data points
lattice::panel.points(
curve_data[used_for_fit, a_column_name] ~ curve_data[used_for_fit, x_name],
col = 'black',
pch = 16
)
lattice::panel.points(
curve_data[!used_for_fit, a_column_name] ~ curve_data[!used_for_fit, x_name],
col = 'black',
pch = 1
)
},
...
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.