Nothing
# Get test curves to use
source('one_curve_c3_aci.R')
# Load helping function
source('get_duplicated_colnames.R')
# Choose test tolerance
TOLERANCE <- 1e-4
test_that('fit failures are handled properly', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res_bad <- expect_silent(
fit_c3_variable_j(
one_curve_bad,
Ca_atmospheric = 420,
optim_fun = optimizer_deoptim(200),
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
)
expect_equal(unique(fit_res_bad$fits[, 'c3_assimilation_msg']), 'alpha_old must be >= 0 and <= 1')
expect_equal(unique(fit_res_bad$fits[, 'c3_variable_j_msg']), 'Ci must be >= 0. tau must be >= 0 and <= 1')
expect_equal(fit_res_bad$parameters[, 'c3_assimilation_msg'], 'alpha_old must be >= 0 and <= 1')
expect_equal(fit_res_bad$parameters[, 'c3_variable_j_msg'], 'Ci must be >= 0. tau must be >= 0 and <= 1')
expect_true(all(is.na(fit_res_bad$fits[, c('A_fit', 'Ac', 'Aj', 'Ap', 'gmc', 'Cc')])))
expect_true(all(is.na(fit_res_bad$fits_interpolated[, c('An', 'Ac', 'Aj', 'Ap', 'gmc', 'Cc')])))
expect_true(all(is.na(fit_res_bad$parameters[, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'Tp_at_25', 'tau', 'AIC')])))
expect_true(all(is.na(fit_res_bad$parameters[, c('Vcmax_at_25_upper', 'J_at_25_upper', 'RL_at_25_upper', 'Tp_at_25_upper', 'tau_upper')])))
})
test_that('Ci and Cc limits can be bypassed', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- expect_silent(
fit_c3_variable_j(
one_curve_bad,
Ca_atmospheric = 420,
optim_fun = optimizer_deoptim(200),
hard_constraints = 0,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
)
expect_equal(unique(fit_res$fits[, 'c3_assimilation_msg']), '')
expect_equal(unique(fit_res$fits[, 'c3_variable_j_msg']), '')
expect_equal(fit_res$parameters[, 'c3_assimilation_msg'], '')
expect_equal(fit_res$parameters[, 'c3_variable_j_msg'], '')
expect_true(all(!is.na(fit_res$fits[, c('A_fit', 'gmc', 'Cc')])))
})
test_that('Gamma_star can be passed as a column', {
one_curve_with_gstar <- set_variable(
one_curve,
'Gamma_star_at_25',
'micromol mol^(-1)',
value = 38.6
)
expect_silent(
fit_c3_variable_j(
one_curve_with_gstar,
fit_options = list(Gamma_star_at_25 = 'column'),
optim_fun = optimizer_nmkb(1e-7),
calculate_confidence_intervals = FALSE
)
)
})
test_that('fit results have not changed (no alpha)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c3_variable_j(
one_curve,
Ca_atmospheric = 420,
fit_options = list(alpha_old = 0, alpha_g = 0, alpha_s = 0),
optim_fun = optimizer_deoptim(200),
require_positive_gmc = 'all',
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
check_j = FALSE
)
fit_res$parameters <- calculate_temperature_response(
fit_res$parameters,
jmax_temperature_param_bernacchi,
'TleafCnd_avg'
)
fit_res$parameters <- calculate_jmax(
fit_res$parameters,
0.6895,
0.97875
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC', 'TleafCnd_avg', 'Jmax_at_25')]),
c(240.718, 254.101, 1.885, 0.405, NA, 40.416, 30.1448308, 255.3210905),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25_upper', 'J_at_25_upper', 'RL_at_25_upper', 'tau_upper', 'Tp_at_25_upper', 'Jmax_at_25_upper')]),
c(247.455, 256.611, 1.892, 0.409, Inf, 257.8580417),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('operating_Ci', 'operating_Cc', 'operating_An', 'operating_An_model')]),
c(294.70316, 216.41088, 37.51608, 40.05385),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 5, 8)
)
expect_equal(
as.character(fit_res$fits[, 'limiting_process']),
c('Ac', 'Ac', 'Ac', 'Ac', 'Ac', 'Ac', 'Ac', 'Ac', 'Aj', 'Aj', 'Aj', 'Aj', 'Aj')
)
lim_info <-
as.numeric(fit_res$parameters[1, c('n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting')])
expect_equal(sum(lim_info), nrow(one_curve))
expect_equal(lim_info, c(8, 5, 0))
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_trust', 'J_trust', 'Tp_trust')]),
c(2, 2, 0)
)
})
test_that('fit results have not changed (alpha_old)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c3_variable_j(
one_curve,
Ca_atmospheric = 420,
fit_options = list(alpha_old = 'fit', alpha_g = 0, alpha_s = 0),
optim_fun = optimizer_deoptim(200),
require_positive_gmc = 'all',
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
check_j = FALSE
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC')]),
c(243.821, 256.166, 1.901, 0.409, NA, 42.429),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25_upper', 'J_at_25_upper', 'RL_at_25_upper', 'tau_upper', 'Tp_at_25_upper')]),
c(250.388, 258.740, 1.912, 0.412, Inf),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 6, 7)
)
lim_info <-
as.numeric(fit_res$parameters[1, c('n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting')])
expect_equal(sum(lim_info), nrow(one_curve))
expect_equal(lim_info, c(8, 5, 0))
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_trust', 'J_trust', 'Tp_trust')]),
c(2, 2, 0)
)
})
test_that('fit results have not changed (alpha_g and alpha_s)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c3_variable_j(
one_curve,
Ca_atmospheric = 420,
fit_options = list(alpha_old = 0, alpha_g = 'fit', alpha_s = 'fit'),
optim_fun = optimizer_deoptim(200),
require_positive_gmc = 'all',
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
check_j = FALSE
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC')]),
c(223.833, 264.193, 1.798, 0.422, NA, 45.052),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25_upper', 'J_at_25_upper', 'RL_at_25_upper', 'tau_upper', 'Tp_at_25_upper')]),
c(230.9429, 267.1610, 2.4567, 0.4251, Inf),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 7, 6)
)
lim_info <-
as.numeric(fit_res$parameters[1, c('n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting')])
expect_equal(sum(lim_info), nrow(one_curve))
expect_equal(lim_info, c(8, 5, 0))
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_trust', 'J_trust', 'Tp_trust')]),
c(2, 2, 0)
)
})
test_that('fit results have not changed (pseudo-FvCB)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c3_variable_j(
one_curve,
Ca_atmospheric = 420,
optim_fun = optimizer_deoptim(200),
use_min_A = TRUE,
check_j = FALSE
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC')]),
c(319.868, 313.808, 2.441, 0.500, NA, 49.966),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 6, 7)
)
lim_info <-
as.numeric(fit_res$parameters[1, c('n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting')])
expect_equal(sum(lim_info), nrow(one_curve))
expect_equal(lim_info, c(7, 6, 0))
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25_upper', 'J_at_25_upper', 'RL_at_25_upper', 'tau_upper', 'Tp_at_25_upper')]),
c(331.800, 317.787, 2.445, 0.505, Inf),
tolerance = TOLERANCE
)
})
test_that('removing and excluding points produce the same fit results', {
pts_to_remove <- c(3, 5, 13)
one_curve_remove <- remove_points(
one_curve,
list(seq_num = pts_to_remove),
method = 'remove'
)
one_curve_exclude <- remove_points(
one_curve,
list(seq_num = pts_to_remove),
method = 'exclude'
)
expect_equal(nrow(one_curve_remove), 10)
expect_equal(nrow(one_curve_exclude), 13)
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res_remove <- fit_c3_variable_j(
one_curve_remove,
Ca_atmospheric = 420,
optim_fun = optimizer_deoptim(200)
)
set.seed(1234)
fit_res_exclude <- fit_c3_variable_j(
one_curve_exclude,
Ca_atmospheric = 420,
optim_fun = optimizer_deoptim(200)
)
# Check that results haven't changed
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC')]),
c(268.81, 277.21, 1.97, 0.44, NA, 41.90),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('npts', 'nparam', 'dof')]),
c(10, 6, 4)
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('RSS', 'RMSE')]),
c(9.534, 0.976),
tolerance = TOLERANCE
)
# Check that remove/exclude results are the same
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC')]),
as.numeric(fit_res_exclude$parameters[1, c('Vcmax_at_25', 'J_at_25', 'RL_at_25', 'tau', 'Tp_at_25', 'AIC')]),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('npts', 'nparam', 'dof')]),
as.numeric(fit_res_exclude$parameters[1, c('npts', 'nparam', 'dof')])
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('RSS', 'RMSE')]),
as.numeric(fit_res_exclude$parameters[1, c('RSS', 'RMSE')]),
tolerance = TOLERANCE
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.