PoDBAY population class

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

library(dplyr)
library(PoDBAY)
set.seed(1)

This document describes how to create a population class object using PoDBAY package. Population class is used across the vignettes and package functions (see vignette("efficacyestimation", package = "PoDBAY") and vignette("simulation", package = "PoDBAY")) and it allows the user utilize the different populations, e.g. vaccinated, control, diseased, nondiseased.

For creation of any population class object generatePopulation function is used. The goal of this document is to show:

Empty population class object

The easiest application of the population class is to generate an empty population class object i.e. population class object with no characteristics which can later be adjusted.

populationEmpty <- generatePopulation()
populationEmpty

Non-empty population class object

Sometimes we want to generate a population class object based on the summary statistics (N, mean, sd). For example, this approach can be used when creating population class objects in the simulations - see vignette("simulation", package = "PoDBAY") for more details.

In this example we create two population class objects - vaccinated and control.

Approach 1 This approach is useful when we don't necessarily need to generate individual titers.

vaccinated <- generatePopulation()
vaccinated$N <- 1000
vaccinated$mean <- 7
vaccinated$stdDev <- 2

str(vaccinated)

control <- generatePopulation()
control$N <- 1000
control$mean <- 5
control$stdDev <- 2

str(control)

Approach 2 If the population summary statistics parameters are used as function input individual titers are generated as well (by sampling from normal distribution). These titers can be later changed if needed.

vaccinated <- generatePopulation(N = 1000,
                                 mean = 7,
                                 stdDev = 2)
str(vaccinated)

control <- generatePopulation(N = 1000,
                                   mean = 5,
                                   stdDev = 2)

str(control)

Application of population class methods

The advantage of the population class is that we can apply certain predefined class methods/functions. This simplifies working with population data (in the form of population class object) substantially.

list of useful available methods:

Starting population class object

Let's start with the two population class objects - vaccinated, control - defined above.

vaccinated <- generatePopulation()
vaccinated$N <- 1000
vaccinated$mean <- 7
vaccinated$stdDev <- 2

str(vaccinated)

control <- generatePopulation()
control$N <- 1000
control$mean <- 5
control$stdDev <- 2

str(control)

getTiters

Generate titers based on the population parameters - N, mean, stdDev - by sampling from the normal distribution.

vaccinated$getTiters()
control$getTiters()
str(vaccinated)
str(control)

assignPoD

Assign PoD to each subject in the population based on the provided PoD function. We will use example from vignette("simulation", package = "PoDBAY").

# Define PoD curve parameters
PoDParams <- data.frame("pmax" = 0.05, "et50" = 5, "slope" = 7)

# Assign PoD
vaccinated$assignPoD(
  PoD(titer = vaccinated$titers,
      pmax = PoDParams$pmax,
      et50 = PoDParams$et50,
      slope = PoDParams$slope,
      adjustTiters = FALSE
  ))

control$assignPoD(
  PoD(titer = control$titers,
      pmax = PoDParams$pmax,
      et50 = PoDParams$et50,
      slope = PoDParams$slope,
      adjustTiters = FALSE
  ))

str(vaccinated)
str(control)

Another way to assign PoD

vaccinated$assignPoD(
  rep(0.05, vaccinated$N))

control$assignPoD(
  rep(0.1, control$N))

getDiseasedCount, getNondiseasedCount, getDiseasedTiters, getNondiseasedTiters

For using these methods, the population class object needs to have disease status assigned.

To assign disease status we will use ClinicalTrial function form the PoDBAY package.

CaseCount <- ClinicalTrial(vaccinated, control, CI = 0.95)

str(vaccinated)
str(control)
vaccinated$getDiseasedCount()
vaccinated$getNondiseasedCount()
vaccinated$getDiseasedTiters()
as_tibble(vaccinated$getNondiseasedTiters())

How to convert subject level data into the population class object

We use mock-up data from a clinical trial and show how to convert them into a population class object so the data can be applied in the PoDBAY package.

Mock-up data

Assume we have 20 patients from which 10 are vaccinated and 10 are in the control group. For each patient we have measurement of their $log_2(titer)$ values.

dataTrial <- data.frame("patno" = 1:20,
                        "treatment" = c(rep(FALSE, 10), rep(TRUE, 10)),
                        "titers" = as.numeric(c(rnorm(10, 5, 2),
                                                rnorm(10, 7, 2)))
                        )

dataTrial

Conversion to population class object

We use approach from above and convert our mock-up data into the PoDBAY population class object.

# vaccinated
vacc <- dataTrial %>% filter(treatment)

vaccinated <- generatePopulation()
vaccinated$N <- nrow(vacc)
vaccinated$mean <- mean(vacc$titers)
vaccinated$stdDev <- sd(vacc$titers)
vaccinated$titers <- vacc$titers

vaccinated

# control
ctrl <- dataTrial %>% filter(!treatment)

control <- generatePopulation()
control$N <- nrow(ctrl)
control$mean <- mean(ctrl$titers)
control$stdDev <- sd(ctrl$titers)
control$titers <- ctrl$titers


control


Try the PoDBAY package in your browser

Any scripts or data that you put into this service are public.

PoDBAY documentation built on Sept. 21, 2021, 5:08 p.m.