Description Usage Arguments Value References See Also Examples
This function computes and assembles the correlation entries for the intermediate multivariate normal data.
| 1 2 | intermat(no_pois, no_bin, no_ord, no_norm, corr_mat, prop_vec_bin, prop_vec_ord,
 lam_vec, nor_mean, nor_var)
 | 
| no_pois | Number of the count variables. | 
| no_bin | Number of the binary variables. | 
| no_ord | Number of the ordinal variables. | 
| no_norm | Number of the normal variables. | 
| corr_mat | Pre-specified correlation matrix for the multivariate data. | 
| prop_vec_bin | Vector of probabilities for the binary variables. | 
| prop_vec_ord | Vector of probabilities for the ordinal variables. | 
| lam_vec | Vector of rate parameters for the count variables. | 
| nor_mean | Vector of means for the normal variables. | 
| nor_var | Vector of variances for the normal variables. | 
The intermediate correlation matrix that will be used later for multivariate normal data simulation.
Barberio, A. & Ferrari, P.A. (2015). GenOrd: Simulation of discrete random variables with given correlation matrix and marginal distributions. https://cran.r-project.org/web/packages/GenOrd/index.html.
Demirtas, H. & Hedeker, D. (2011). A practical way for computing approximate lower and upper correlation bounds. American Statistician, 65(2), 104-109.
Demirtas, H. & Hedeker, D. (2016). Computing the point-biserial correlation under any underlying continuous distribution. Communications in Statistics–Simulation and Computation, 45(8), 2744-2751.
Ferrari, P.A. and Barberio, A. (2012). Simulating ordinal data. Multivariate Behavioral Research, 47(4), 566-589.
corr.nn4bb, corr.nn4bn, corr.nn4on, corr.nn4pbo, 
corr.nn4pn, corr.nn4pp, and validation.specs.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run: 
num_pois<-2
num_bin<-1
num_ord<-2
num_norm<-1
lamvec=sample(10,2)
pbin=runif(1)
pord=list(c(0.3, 0.7), c(0.2, 0.3, 0.5))
nor.mean=3.1
nor.var=0.85
M=
c(-0.05, 0.26, 0.14, 0.09, 0.14, 0.12, 0.13, -0.02, 0.17, 0.29, -0.04, 0.19, 0.10, 0.35, 0.39)
N=diag(6)
N[lower.tri(N)]=M
TV=N+t(N)
diag(TV)<-1
intmat<-
intermat(num_pois,num_bin,num_ord,num_norm,corr_mat=TV,pbin,pord,lamvec,nor.mean,nor.var)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.