Description Details Author(s) References See Also Examples
Random generation for the modified Asymmetric Power Distribution with parameters theta
, phi
, alpha
and lambda
.
This generator is called by function gensample
to create random variables based on its parameters.
If theta
, phi
, alpha
and lambda
are not specified they assume the default values of 0, 1, 0.5 and 2, respectively.
The modified Asymmetric Power Distribution with parameters theta
, phi
, theta1
and theta2
has density:
f(x|θ) = ([(δ_{θ}/2)^{1/θ_2}] / [Γ(1+1/θ_2)]) \exp[-(((2(δ_{θ}/2)^{1/θ_2}) / (1+sign(x)(1-2θ_1))) * |x|)^{θ_2}]
where θ = (θ_2, θ_1)^T is the vector of parameters, θ_2>0, 0<θ_1<1 and
δ_{θ} = (2(θ_1)^{θ_2} (1-θ_1)^{θ_2}) / ((θ_1)^{θ_2}+(1-θ_1)^{θ_2})
.
The mean and variance of APD are defined respectively by
E(U) = θ + 2 ^ {1 / θ_2} φ Γ(2 / θ_2) (1 - 2 θ_1) δ ^ {-1 / θ_2} / Γ(1 / θ_2)
and
V(U) = 2 ^ {2 / θ_2} φ ^ 2 ≤ft(Γ(3 / θ_2) Γ(1 / θ_2) (1 - 3 θ_1 + 3 θ_1 ^ 2) - Γ^2(2 / θ_2) (1 - 2 θ_1) ^ 2\right) δ ^ {-2 / θ_2} / Γ^2(1 / θ_2).
P. Lafaye de Micheaux
Pierre Lafaye de Micheaux, Viet Anh Tran (2016). PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, 69(3), 1–42. doi:10.18637/jss.v069.i03
Desgagne, A. and Lafaye de Micheaux, P. and Leblanc, A. (2016), Test of normality based on alternate measures of skewness and kurtosis, ,
See Distributions
for other standard distributions.
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.