`ExampleModels`

constructs two risk models using logistic regression analysis.
Most of the functions in this package require a logistic regression model as an input and
estimate predicted risks from this fitted model.
To illustrate these functions without repeating the construction of a
logistic regression model, this example code has been created.
The function returns two different risk models, riskModel1 which is based
on non-genetic predictors and riskModel2 which includes genetic and non-genetic predictors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ```
# specify dataset with outcome and predictor variables
data(ExampleData)
# specify column number of the outcome variable
cOutcome <- 2
# specify column numbers of non-genetic predictors
cNonGenPred1 <- c(3:10)
cNonGenPred2 <- c(3:10)
# specify column numbers of non-genetic predictors that are categorical
cNonGenPredCat1 <- c(6:8)
cNonGenPredCat2 <- c(6:8)
# specify column numbers of genetic predictors
cGenPred1 <- c(0)
cGenPred2 <- c(11:16)
# specify column numbers of genetic predictors that are categorical
cGenPredsCat1 <- c(0)
cGenPredsCat2 <- c(0)
# fit logistic regression models
riskmodel1 <- fitLogRegModel(data=ExampleData, cOutcome=cOutcome,
cNonGenPreds=cNonGenPred1, cNonGenPredsCat=cNonGenPredCat1,
cGenPreds=cGenPred1, cGenPredsCat=cGenPredsCat1)
riskmodel2 <- fitLogRegModel(data=ExampleData, cOutcome=cOutcome,
cNonGenPreds=cNonGenPred2, cNonGenPredsCat=cNonGenPredCat2,
cGenPreds=cGenPred2, cGenPredsCat=cGenPredsCat2)
# combine output in a list
ExampleModels <- list(riskModel1=riskmodel1, riskModel2=riskmodel2)
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.