Description Usage Arguments Details Value Author(s) References Examples
Computes the value of the parametric variogram model at given distances.
1 | linesmodel(distance, variog.model="exponential", param)
|
distance |
numeric vector of distances. |
variog.model |
character string giving the name of the parametric variogram model. Implemented models are: exponential, spherical, gauss, gencauchy and matern. |
param |
numeric vector containing the values of the variogram parameters. If the parametric model specified is exponential, spherical or
gauss, If the parametric model specified is gencauchy, If the parametric model specified is matern, |
The function calculates the value of the parametric variogram at given distances using the following equations:
- If the parametric model is exponential
γ(d) = ρ+σ^{2} \cdot (1-exp(- \frac{d}{r}))
where ρ is the nugget effect, σ^2 is the variance, r is the range, and d is the distance.
- If the parametric model is spherical
γ(d) = ρ+σ^{2} \cdot (\frac{3}{2}\cdot\frac{d}{r}-\frac{1}{2}\cdot \frac{d^3}{r^3})
where ρ is the nugget effect, σ^2 is the variance, r is the range, and d is the distance.
- If the parametric model is gauss
γ(d) = ρ+σ^{2} \cdot (1-exp(- \frac{d^2}{r^2} ))
where ρ is the nugget effect, σ^2 is the variance, r is the range, and d is the distance.
- If the parametric model is gencauchy
γ(d) = ρ+σ^{2} \cdot (1-(1+\frac{d^a}{r^a})^{- \frac{b}{a}})
where ρ is the nugget effect, σ^2 is the variance, r is the range, d is the distance, a is the smoothness parameter, and b is the long-range parameter.
- If the parametric model is matern
γ(d) = ρ+σ^{2} \cdot (1-(\frac{2^{1-a}}{Γ(a)}\cdot \frac{d^a}{r^a} \cdot K_{a}(\frac{d}{r}))
where ρ is the nugget effect, σ^2 is the variance, r is the range, d is the distance, and a is the smoothness parameter.
The function returns a numeric vector with the values of the parametric variogram model at the bin midpoints.
Berrocal, V. J. (veroberrocal@gmail.com), Raftery, A. E., Gneiting, T., Gel, Y.
Gel, Y., Raftery, A. E., Gneiting, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output Perturbation (GOP) method (with discussion). Journal of the American Statistical Association, Vol. 99 (467), 575–583.
Cressie, N. A. C. (1993). Statistics for Spatial Data (revised ed.). Wiley: New York.
Gneiting, T., Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effect. SIAM Review 46, 269–282.
Stein, M. L. (1999). Interpolation of Spatial Data - Some Theory for Kriging. Springer-Verlag: New York.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Loading data
data(slp)
day <- slp$date.obs
id <- slp$id.stat
coord1 <- slp$lon.stat
coord2 <- slp$lat.stat
obs <- slp$obs
forecast <- slp$forecast
## Computing empirical variogram
variogram <- Emp.variog(day=day,obs=obs,forecast=forecast,id=id,coord1=coord1,
coord2=coord2,cut.points=NULL,max.dist=NULL,nbins=NULL)
## Estimating variogram parameters
## Without specifying initial values for the parameters
param.variog <-
Variog.fit(emp.variog=variogram,variog.model="exponential",max.dist.fit=NULL,
init.val=NULL,fix.nugget=FALSE)
## Plotting the empirical variogram with the estimated parametric variogram superimposed
plot(variogram$bin.midpoints,variogram$empir.variog,xlab="Distance",ylab="Semi-variance")
lines(variogram$bin.midpoints,linesmodel(distance=variogram$bin.midpoints,variog.model="exponential",param=c(param.variog$nugget,
param.variog$variance,param.variog$range)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.