Description Usage Arguments Value Note Author(s) References See Also Examples
Plot weather fields.
1 | plotfields(field, x.lim, y.lim, country.outline="US", title)
|
field |
numeric square matrix containing the values of the weather field on a grid. |
x.lim |
numeric vector giving the smallest and the largest longitude to be displayed. |
y.lim |
numeric vector giving the smallest and the largest latitude to be displayed. |
country.outline |
character string indicating which country to
outline in the plot. Possible values are "US", "world" or "both". If "US"
is specified, a medium resolution outline of the US with the states and
bodies of water is added to plot. If "world" is specified, a medium
resolution of bodies of land and mass of water delimited by the smallest
and largest latitude and longitude specified in |
title |
character string with the title for the plot. |
The function returns a graphical display of the weather field on a region delimited by the lower and upper bound for the longitude and the latitude.
This function uses the package fields.
Gel, Y., Raftery, A. E., Gneiting, T., Berrocal, V. J. veronica@stat.washington.edu.
Gel, Y., Raftery, A. E., Gneiting, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output Perturbation (GOP) method (with discussion). Journal of the American Statistical Association, Vol. 99 (467), 575–583.
Nychka, D. (2004). The fields package. Available at: http:lib.stat.cmu.edu/R/CRAN/doc/package/fields.pdf.
The package fields for display of spatial data, and US
and world
for a map of the US and the world.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ## Loading data
library(fields)
library(RandomFields)
data(slp)
data(gridlong)
data(gridlat)
data(forecast.grid)
day <- slp$date.obs
id <- slp$id.stat
coord1 <- slp$lon.stat
coord2 <- slp$lat.stat
obs <- slp$obs
forecast <- slp$forecast
coord1.grid <- gridlong$gridded.long
coord2.grid <- gridlat$gridded.lat
forecast.grid <- forecast.grid$gridded.forecast
## Computing the empirical variogram
variogram <- Emp.variog(day,obs,forecast,id,coord1,coord2,cut.points=NULL,
max.dist=NULL,nbins=NULL)
## Estimating parameters
param.est <- Variog.fit(variogram,"exponential",max.dist.fit=NULL,
init.val=NULL,fix.nugget=FALSE)
## Simulating realizations of the weather random field
simul <- Field.sim(obs, forecast, coord1.grid, coord2.grid, forecast.grid,
variog.model="exponential", param.est=c(param.est$nugget,param.est$variance,
param.est$range), n.sim=4, n.displ=0, qt.displ=c(10,50,90))
##Plotting one of the simulated weather random fields
par(mfrow=c(1,1),mai=c(0.8,0.8,0.8,0.8))
plotfields(simul$sim.fields[,,1],x.lim=c(min(coord1.grid),max(coord1.grid)),
y.lim=c(min(coord2.grid),max(coord2.grid)),country.outline="US",title="Simulated weather field")
## Plotting one of the percentiles of the weather field
par(mfrow=c(1,1),mai=c(0.8,0.8,0.8,0.8))
plotfields(simul$pct.fields[,,1],x.lim=c(min(coord1.grid),max(coord1.grid)),
y.lim=c(min(coord2.grid),max(coord2.grid)),country.outline="US",title="10th percentile")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.