TracePst: Pst variations in function of c/h^2

Description Usage Arguments Value Note Author(s) References Examples

Description

'TracePst' plots the curves of the functions that map c/h^2 onto Pst (for chosen quantitative measures). Indeed, Pst depends on the value of c/h^2, where c is the assumed additive genetic proportion of differences between populations and where h^2 is (narrow-sense heritability) the assumed additive genetic proportion of differences between individuals within populations.

Usage

1
TracePst(data,va=0,ci=1,boot=1000,pe=0.95,Fst=-1,Pw=0,Rp=0,Ri=0,xm=2,pts=30)

Arguments

data

a dataframe with as many rows as individuals. The first column contains the name of the population to which the individual belongs, the others contain quantitative variables.

va

a vector containing the selected variables names or numbers (i.e. those of the quantitative measures considered). If va=0 all the variables are selected.

ci

if ci=1 the confidence interval of Pst is plotted.

boot

the number of data frames generated to determine the confidence interval or to construct the dotted lines representing this confidence interval (using the bootstrap method).

pe

the confidence level of the calculated interval.

Fst

the value of Wright's Fst, if avalaible.

Pw

a vector containing the names of the two populations considered to obtain pairwise Pst.

Rp

a vector containing the names of the populations to be deleted.

Ri

a vector containing each number of individual to be deleted. The vector Ri must contain existent individuals, each of them once.

xm

the maximum on x-axis (values of c/h^2).

pts

number of points used to plot the curves.

Value

In any case, the sizes of each population considered. The expected curves.

Note

The time required to construct the dotted lines associated with the confidence intervals might be fairly long depending on the user choices.

Author(s)

Blondeau Da Silva Stephane - Da Silva Anne.

References

Brommer J., 2011. Whither Pst? The approximation of Qst by Pst in evolutionary and conservation biology. Journal of Evolutionary Biology, 24:1160-1168.

Lima M.R. et al., 2012. Genetic and Morphometric Divergence of an Invasive Bird: The Introduced House Sparrow (Passer domesticus) in Brazil. PloS One 7 (12).

On Fst : Wright S., 1951. The genetical structure of populations. Annals of Eugenics 15, 323-354.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
data(test)
# TracePst(test)
# TracePst(test,boot=2000,va="QM7",Ri=18,pe=0.9,pts=40,xm=4)
TracePst(test,va=7:10,Fst=0.3,Ri=c(22,27,195),Rp=c("A","C","E"),ci=0)
# TracePst(test,va="QM1",Ri=c(3,7:17),Pw=c("C","D"),pts=20)

## The function is currently defined as
function (data, va = 0, ci = 1, boot = 1000, pe = 0.95, Fst = -1, 
    Pw = 0, Rp = 0, Ri = 0, xm = 2, pts = 30) 
{
    nonNa.clm <- function(data, clm) {
        nb.ind = dim(data)[1]
        nb.na = 0
        for (i in 1:nb.ind) if (is.na(data[i, clm])) 
            nb.na = nb.na + 1
        return(nb.ind - nb.na)
    }
    dat.fra.prep <- function(data) {
        nb.var = dim(data)[2] - 1
        data = as.data.frame(data)
        data[, 1] = as.character(data[, 1])
        for (i in 1:nb.var) {
            if (is.numeric(data[, i + 1]) == FALSE) 
                data[, i + 1] = as.numeric(as.character(data[, 
                  i + 1]))
        }
        dat.sta <- function(dat) {
            nb.vari = dim(dat)[2] - 1
            st.dev = rep(0, nb.vari)
            mea = rep(0, nb.vari)
            for (i in 1:nb.vari) {
                nna.clm = nonNa.clm(dat, i + 1)
                st.dev[i] = sqrt((nna.clm - 1)/nna.clm) * sd(dat[, 
                  i + 1], na.rm = TRUE)
                mea[i] = mean(dat[, i + 1], na.rm = TRUE)
            }
            for (j in 1:nb.vari) dat[, j + 1] = (dat[, j + 1] - 
                mea[j])/st.dev[j]
            return(dat)
        }
        data = dat.sta(data)
        return(data)
    }
    dat.rem.ind.pop <- function(data, ind = 0, pop = 0) {
        data = as.data.frame(data)
        dat.rem.ind <- function(dat, ind) {
            nb.rem.ind = length(ind)
            nb.ind = dim(dat)[1]
            for (i in 1:nb.rem.ind) dat = dat[row.names(dat)[1:(nb.ind - 
                i + 1)] != ind[i], ]
            return(dat)
        }
        dat.rem.pop <- function(dat, pop) {
            nb.rem.pop = length(pop)
            for (i in 1:nb.rem.pop) dat = dat[dat[, 1] != pop[i], 
                ]
            return(dat)
        }
        if (ind[1] != 0) 
            data = dat.rem.ind(data, ind)
        if (pop[1] != 0) 
            data = dat.rem.pop(data, pop)
        return(data)
    }
    dat.pw <- function(data, pw = 0) {
        if (pw[1] == 0) 
            return(data)
        else {
            data = data[data[, 1] == pw[1] | data[, 1] == pw[2], 
                ]
            return(data)
        }
    }
    nb.pop <- function(data) {
        data = data[order(data[, 1]), ]
        nb.ind = dim(data)[1]
        nb.pop = 1
        for (i in 1:(nb.ind - 1)) if (data[i, 1] != data[i + 
            1, 1]) 
            nb.pop = nb.pop + 1
        return(nb.pop)
    }
    pop.freq <- function(data) {
        data = data[order(data[, 1]), ]
        nb.ind = dim(data)[1]
        dat.fra = as.data.frame(data)
        nb.pop = 1
        for (i in 1:(nb.ind - 1)) if (data[i, 1] != data[i + 
            1, 1]) 
            nb.pop = nb.pop + 1
        pop.freq.vec = rep(1, nb.pop)
        name = rep(0, nb.pop)
        k = 1
        name[1] = as.character(dat.fra[1, 1])
        for (i in 2:nb.ind) if (dat.fra[i - 1, 1] == dat.fra[i, 
            1]) 
            pop.freq.vec[k] = pop.freq.vec[k] + 1
        else {
            k = k + 1
            name[k] = as.character(dat.fra[i, 1])
        }
        names(pop.freq.vec) = name
        return(pop.freq.vec)
    }
    Pst.val <- function(data, csh = 1) {
        nbpop = nb.pop(data)
        nb.var = dim(data)[2] - 1
        data = data[order(data[, 1]), ]
        if (nbpop == 1) 
            return(rep(0, nb.var))
        else {
            pop.freq = pop.freq(data)
            Pst.clm <- function(dat, clm) {
                mea = mean(dat[, clm], na.rm = TRUE)
                nna.clm = nonNa.clm(dat, clm)
                SSTotal = (nna.clm - 1) * var(dat[, clm], na.rm = TRUE)
                mea.pop = rep(0, nbpop)
                nna.pop.freq = rep(0, nbpop)
                nna.pop.freq[1] = nonNa.clm(dat[1:(pop.freq[1]), 
                  ], clm)
                nb.allna.pop = 0
                if (nna.pop.freq[1] == 0) 
                  nb.allna.pop = 1
                else mea.pop[1] = mean(dat[1:(pop.freq[1]), clm], 
                  na.rm = TRUE)
                for (i in 2:nbpop) {
                  nna.pop.freq[i] = nonNa.clm(dat[(sum(pop.freq[1:(i - 
                    1)]) + 1):(sum(pop.freq[1:i])), ], clm)
                  if (nna.pop.freq[i] != 0) 
                    mea.pop[i] = mean(dat[(sum(pop.freq[1:(i - 
                      1)]) + 1):(sum(pop.freq[1:i])), clm], na.rm = TRUE)
                  else nb.allna.pop = nb.allna.pop + 1
                }
                SSBetween = sum(nna.pop.freq * (mea.pop - mea)^2)
                SSWithin = SSTotal - SSBetween
                if ((nna.clm - nbpop + nb.allna.pop) * (nbpop - 
                  nb.allna.pop - 1) != 0) {
                  MSWithin = SSWithin/(nna.clm - nbpop + nb.allna.pop)
                  MSBetween = SSBetween/(nbpop - nb.allna.pop - 
                    1)
                  return(csh * MSBetween/(csh * MSBetween + 2 * 
                    MSWithin))
                }
                else {
                  if ((nna.clm - nbpop + nb.allna.pop) == 0) 
                    return(1)
                  else return(0)
                }
            }
            pst.val = rep(0, nb.var)
            for (j in 1:nb.var) pst.val[j] = Pst.clm(data, j + 
                1)
            return(pst.val)
        }
    }
    boot.pst.va <- function(data, csh, boot, clm) {
        nb.ind = dim(data)[1]
        dat = data[, c(1, clm)]
        boot.val = rep(0, boot)
        for (i in 1:boot) {
            da = dat[sample(1:nb.ind, nb.ind, T), ]
            boot.val[i] = Pst.val(da, csh)
        }
        return(boot.val)
    }
    ConInt.pst.va <- function(data, csh, boot, clm, per) {
        boot.pst.val = boot.pst.va(data = data, csh = csh, boot = boot, 
            clm = clm)
        boot.pst.val = sort(boot.pst.val)
        return(c(boot.pst.val[floor(boot * (1 - per)/2 + 1)], 
            boot.pst.val[ceiling(boot * (per + 1)/2)]))
    }
    Trace <- function(data, pts, boot, Fst, xm, ci) {
        tra.pst.fst.va <- function(data, pts, clm, Fst, xmax, 
            lab.pos) {
            data = data[, c(1, clm)]
            points <- function(nb.pts) {
                pst.va = Pst.val(data, 0)
                for (i in 1:nb.pts) pst.va = c(pst.va, Pst.val(data, 
                  xmax * i/nb.pts))
                return(pst.va)
            }
            pst.val = points(nb.pts = pts)
            csh.val = xm * c(0:pts)/pts
            plot(pst.val ~ csh.val, type = "l", xlab = "c/h^2", 
                ylab = "Pst", main = c("Pst variations:", names(data)[2]), 
                ylim = c(0, 1), col = "firebrick1")
            if (Fst != -1) {
                abline(h = Fst, col = "green", lty = 4)
                text(0.05 * lab.pos - 0.06, Fst + 0.04 * lab.pos - 
                  0.01, "Fst", col = "green")
            }
        }
        tra.confint.va <- function(clm) {
            point <- function(nb.pt) {
                ci.pst.va = ConInt.pst.va(data, csh = 0, boot = boot, 
                  clm = clm, per = pe)
                upbnd.val = ci.pst.va[2]
                lowbnd.val = ci.pst.va[1]
                for (i in 1:nb.pt) ci.pst.va = c(ci.pst.va, ConInt.pst.va(data, 
                  csh = xm * i/nb.pt, boot = boot, clm = clm, 
                  per = pe))
                for (i in 1:nb.pt) upbnd.val = c(ci.pst.va[2 + 
                  2 * i], upbnd.val)
                for (i in 1:nb.pt) lowbnd.val = c(lowbnd.val, 
                  ci.pst.va[1 + 2 * i])
                return(c(upbnd.val, lowbnd.val))
            }
            ci.pst.val = point(nb.pt = pts)
            csh.val = xm * c(0:pts)/pts
            rev.csh.val = rev(csh.val)
            plot(ci.pst.val ~ c(rev.csh.val, csh.val), type = "l", 
                xlab = "c/h^2", ylab = "Pst", main = c("Pst variations:", 
                  names(data)[clm]), ylim = c(0, 1), col = "chocolate4", 
                lty = 2)
        }
        nb.var = dim(data)[2] - 1
        nb.gra.lon = ceiling(sqrt(nb.var))
        par(mfrow = c(nb.gra.lon, nb.gra.lon))
        for (i in 1:nb.var) {
            tra.pst.fst.va(data, pts = pts, Fst = Fst, clm = i + 
                1, xmax = xm, lab.pos = nb.gra.lon)
            if (ci == 1) {
                par(new = TRUE)
                tra.confint.va(clm = i + 1)
            }
        }
    }
    if (va[1] == 0) {
        nb.var = dim(data)[2] - 1
        va = 1:nb.var
    }
    else {
        nb.var = length(va)
        for (i in 1:nb.var) {
            for (j in 2:dim(data)[2]) {
                if (names(data)[j] == va[i]) 
                  va[i] = j - 1
            }
        }
        va = as.numeric(va)
        if (is.na(sum(va)) == TRUE) 
            return("va is not valid!")
    }
    data = dat.fra.prep(data)
    data = dat.rem.ind.pop(data, ind = Ri, pop = Rp)
    data = dat.pw(data, Pw)
    print("Populations sizes are:")
    print(pop.freq(data))
    data = data[, c(1, va + 1)]
    dev.new()
    Trace(data, pts = pts, boot = boot, Fst = Fst, xm = xm, ci = ci)
  }

Pstat documentation built on May 2, 2019, 5:56 a.m.