View source: R/All_SimultaneousEst_MUFASA_Code.R
p.SMUFASA | R Documentation |
Returns SMUFASA calibration coefficient estimates and an average diet among a sample of predators.
p.SMUFASA(pred.mat, prey.mat, FC, ext.fa)
pred.mat |
matrix containing the FA signatures of the predators. |
prey.mat |
matrix containing FA signatures from each prey group. The first column must index the prey group. prey.mat is the prey database. |
FC |
vector of fat content of length equal to the number of prey groups or species. |
ext.fa |
subset of fatty acids to be used to obtain estimates. |
Calibration coefficients (CCs) are not supplied but are instead estimated. While one overall diet is computed, the CCs can be used in p.QFASA or p.MUFASA to estimate individual diet estimates.
A list with components:
Cal_Estimates |
A vector of estimated calibration coefficients common to all predators. The k th value corresponds to the k th fatty acid. The estimates sum to the number of fatty acids. |
Diet_Estimate |
A vector of estimates of the average diet among the predators. The estimates are expressed as proportions summing to one. |
Var_Epsilon |
Optimized values of error variance. |
nll |
Negative log likelihood values. As per solnp documentation, nll is "Vector of function values during optimization with last one the value at the optimal". |
## This example takes some time to run.
## Please uncomment code below to run.
#library(dplyr)
#library(compositions)
## Fatty Acids
#data(FAset)
#fa.set = as.vector(unlist(FAset))
## Predators
#data(predatorFAs)
#tombstone.info = predatorFAs[,1:4]
#predator.matrix = predatorFAs[,5:(ncol(predatorFAs))]
#npredators = nrow(predator.matrix)
## Prey
## Extracting a small number of species to speed up calculations for the example.
#data(preyFAs)
#prey.matrix = preyFAs[,-c(1,3)]
#spec.red <-c("capelin", "herring", "mackerel", "pilchard", "sandlance")
#spec.red <- sort(spec.red)
#prey.red <- prey.matrix %>% filter(Species %in% spec.red)
## Fat content
#FC = preyFAs[,c(2,3)]
#FC = FC %>% arrange(Species)
#FC.vec = tapply(FC$lipid,FC$Species,mean,na.rm=TRUE)
#FC.red <- FC.vec[spec.red]
#out <- p.SMUFASA(predator.matrix, prey.red, FC.red, fa.set)
#out$Cal_Estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.