summary.QuantifQuantile: Summary of QuantifQuantile results

Description Usage Arguments Details Author(s) References See Also Examples

Description

This function displays a summary of QuantifQuantile results.

Usage

1
2
## S3 method for class 'QuantifQuantile'
summary(object, ...)

Arguments

object

An object of class QuantifQuantile, which is the result of the QuantifQuantile, QuantifQuantile.d2 or QuantifQuantile.d functions.

...

Not used.

Details

This function prints the estimated conditional quantiles q_alpha(x) for each x and alpha considered, as an array, and also the selected tuning parameter N_opt.

Author(s)

Isabelle Charlier, Davy Paindaveine, Jerome Saracco

References

Charlier, I. and Paindaveine, D. and Saracco, J., Conditional quantile estimation through optimal quantization, Journal of Statistical Planning and Inference, 2015 (156), 14-30.

Charlier, I. and Paindaveine, D. and Saracco, J., Conditional quantile estimator based on optimal quantization: from theory to practice, Submitted.

See Also

QuantifQuantile, QuantifQuantile.d2 and QuantifQuantile.d

plot.QuantifQuantile, print.QuantifQuantile

Examples

1
2
3
4
5
6
set.seed(644972)
n <- 300
X <- runif(300,-2,2)
Y <- X^2+rnorm(n)
res <- QuantifQuantile(X,Y,testN=seq(10,25,by=5))
summary(res)

Example output

Loading required package: rgl
Loading required package: parallel
Warning messages:
1: In rgl.init(initValue, onlyNULL) : RGL: unable to open X11 display
2: 'rgl_init' failed, running with rgl.useNULL = TRUE 
3: .onUnload failed in unloadNamespace() for 'rgl', details:
  call: fun(...)
  error: object 'rgl_quit' not found 
[1] 10
[1] 15
[1] 20
[1] 25
** Resulting estimated conditional quantiles with N_opt= 20  **
For each x, the corresponding estimated q_alpha(x) for each alpha
             1         2         3         4         5         6         7
x    -1.982839 -1.942640 -1.902441 -1.862242 -1.822042 -1.781843 -1.741644
0.05  2.073442  2.016997  1.838284  1.874447  1.907095  1.880806  1.627620
0.25  2.885480  2.846911  2.760203  2.750845  2.728004  2.630250  2.404685
0.5   3.316173  3.275618  3.238437  3.261051  3.258058  3.164712  2.963722
0.75  3.747009  3.691835  3.608203  3.603696  3.616332  3.530881  3.347815
0.95  4.516303  4.455373  4.364542  4.297824  4.303351  4.164509  3.983568
             8         9         10         11         12         13         14
x    -1.701445 -1.661246 -1.6210473 -1.5808482 -1.5406492 -1.5004501 -1.4602511
0.05  1.499475  1.027641  0.8063486  0.5319739  0.2895155  0.2735656  0.2721411
0.25  2.286811  1.920373  1.7789106  1.6995945  1.6059918  1.5712670  1.5313198
0.5   2.852250  2.553772  2.4214459  2.3254008  2.2035008  2.1084861  2.0205683
0.75  3.268789  3.066780  2.9406310  2.9031772  2.8168377  2.7792500  2.7434251
0.95  3.905396  3.706993  3.6123792  3.6061754  3.5611459  3.5384172  3.4814236
             15         16         17         18            19         20
x    -1.4200521 -1.3798530 -1.3396540 -1.2994549 -1.2592558763 -1.2190568
0.05  0.3631543  0.3347247  0.2272246  0.1246124 -0.0008368414 -0.1014641
0.25  1.5318877  1.3676195  1.3087387  1.2330631  1.0934210794  0.9593931
0.5   1.9413705  1.7879808  1.7385044  1.7343682  1.7191749412  1.6106596
0.75  2.6307476  2.4475539  2.3961000  2.4301675  2.4591320530  2.3564410
0.95  3.3461431  3.1176411  3.0080061  2.9475506  2.9186605821  2.8526262
              21         22          23         24         25         26
x    -1.17885779 -1.1386587 -1.09845970 -1.0582607 -1.0180616 -0.9778626
0.05 -0.05370253 -0.1261913 -0.01878695  0.1937150  0.2280442  0.2774945
0.25  0.96607077  0.7900010  0.78464495  0.8621614  0.8822595  0.9248382
0.5   1.60293384  1.4529438  1.44105230  1.4541162  1.4498567  1.4927249
0.75  2.32434075  2.1359372  2.10880254  2.0500029  1.9740874  1.9745245
0.95  2.83196403  2.7155204  2.74577729  2.7494390  2.6826364  2.6155439
             27           28          29         30         31         32
x    -0.9376635 -0.897464481 -0.85726544 -0.8170664 -0.7768673 -0.7366683
0.05  0.1774933  0.009020793 -0.05736146 -0.1222264 -0.2962282 -0.4671046
0.25  0.8725182  0.749461928  0.70146016  0.6344711  0.4844861  0.3306321
0.5   1.4959450  1.396387831  1.35828317  1.2808414  1.0589716  0.8707602
0.75  1.9455031  1.833570201  1.79991844  1.7359003  1.5683873  1.4217363
0.95  2.5798650  2.514652458  2.50402573  2.4383499  2.2982100  2.1954053
             33         34          35          36         37          38
x    -0.6964693 -0.6562702 -0.61607117 -0.57587213 -0.5356731 -0.49547404
0.05 -0.6470038 -0.5997100 -0.64054298 -0.70834296 -0.7635236 -0.94316706
0.25  0.1732819  0.1769241  0.07153284 -0.09459752 -0.1757845 -0.30015463
0.5   0.6390646  0.6289867  0.48351363  0.27815013  0.1625115  0.08995035
0.75  1.2417973  1.1876065  1.02021454  0.74763456  0.5862331  0.55230250
0.95  2.0973347  2.0828945  1.85087516  1.48016379  1.2643496  1.19140882
              39         40         41         42         43         44
x    -0.45527500 -0.4150760 -0.3748769 -0.3346779 -0.2944788 -0.2542798
0.05 -0.88974412 -0.8303315 -0.8127110 -0.8819343 -1.0365107 -0.9562091
0.25 -0.34390223 -0.3370216 -0.2829101 -0.2228491 -0.2278612 -0.2516464
0.5   0.09109088  0.1375912  0.2057875  0.2558122  0.3220705  0.2706071
0.75  0.59908629  0.7050269  0.7658796  0.7562753  0.8196468  0.7648185
0.95  1.20882119  1.2567676  1.3150183  1.4092108  1.5866155  1.4734743
             45          46         47          48          49          50
x    -0.2140807 -0.17388169 -0.1336826 -0.09348360 -0.05328456 -0.01308552
0.05 -1.0015684 -1.09053908 -1.1241774 -1.11047483 -1.07986573 -1.05339976
0.25 -0.3783501 -0.52380504 -0.5565375 -0.54824005 -0.53077774 -0.49849880
0.5   0.1726129  0.05097388  0.1222979  0.08670777  0.11376053  0.12867365
0.75  0.6926809  0.64182341  0.7557388  0.71747821  0.64185257  0.58518259
0.95  1.4519685  1.40186601  1.5598376  1.53113198  1.52140524  1.53263073
              51          52         53         54          55          56
x     0.02711353  0.06731257  0.1075116  0.1477107  0.18790970  0.22810875
0.05 -1.07824236 -1.16729127 -1.2323386 -1.3644766 -1.44419556 -1.46187514
0.25 -0.55287840 -0.64427630 -0.7095790 -0.8460259 -0.92306623 -0.91322817
0.5   0.06096504 -0.05662394 -0.1504331 -0.3097379 -0.39706769 -0.36796686
0.75  0.56907200  0.45919348  0.3288468  0.1475327  0.06444451  0.06930667
0.95  1.56097231  1.46308706  1.2899706  1.0422682  0.90199445  0.85844399
             57         58         59         60          61          62
x     0.2683078  0.3085068  0.3487059  0.3889049  0.42910397  0.46930301
0.05 -1.4630912 -1.4498440 -1.5393949 -1.6060281 -1.58632384 -1.53437871
0.25 -0.8699728 -0.8157608 -0.9228247 -0.9809836 -0.86260493 -0.76277621
0.5  -0.3007789 -0.2364801 -0.2263595 -0.1938986 -0.02259364  0.05507415
0.75  0.1305363  0.2637317  0.4069769  0.5003417  0.67562938  0.81479606
0.95  0.8199553  0.9089707  1.0871109  1.1255719  1.21237860  1.29004600
             63         64         65         66         67         68
x     0.5095021  0.5497011  0.5899001  0.6300992  0.6702982  0.7104973
0.05 -1.3137674 -1.2087880 -1.0346896 -0.9801638 -1.0628142 -1.0077728
0.25 -0.4894396 -0.3799444 -0.2320515 -0.1389304 -0.1509979 -0.1536646
0.5   0.1782080  0.2729945  0.3231562  0.3438685  0.3664798  0.3242052
0.75  0.9249859  1.0028536  1.1117069  1.1228258  1.0405881  0.9572565
0.95  1.4037654  1.4654436  1.5690313  1.5927808  1.5314917  1.4485229
             69          70           71          72          73          74
x     0.7506963  0.79089536  0.831094405  0.87129345  0.91149249  0.95169154
0.05 -1.0091257 -0.97200251 -1.061287928 -1.26735256 -1.42090567 -1.37566627
0.25 -0.1592860 -0.09008406 -0.007522209  0.02425824  0.01538087  0.07140737
0.5   0.3547409  0.42794217  0.511569623  0.58054959  0.61559177  0.69412867
0.75  0.9209554  0.94390550  0.962056208  0.93366883  0.92937094  1.00706389
0.95  1.3982447  1.39958434  1.413626688  1.43609943  1.51141388  1.67750194
              75          76          77         78         79        80
x     0.99189058  1.03208962  1.07228867  1.1124877  1.1526868  1.192886
0.05 -1.35118320 -1.40146074 -1.44825019 -1.3569132 -0.8911393 -0.592594
0.25  0.08983016  0.04123767  0.06344461  0.1688769  0.4802462  0.646330
0.5   0.77300639  0.78484065  0.84341250  0.9553236  1.1913669  1.341238
0.75  1.16228455  1.23727827  1.39025495  1.5745664  1.8457088  2.059856
0.95  1.93680884  2.06172637  2.25715524  2.4769725  2.7612778  2.994045
             81         82          83        84        85        86        87
x     1.2330848  1.2732839 1.313482932 1.3536820 1.3938810 1.4340801 1.4742791
0.05 -0.2819574 -0.1286109 0.005376222 0.1437243 0.2320959 0.1956525 0.1246165
0.25  0.7630284  0.8270255 0.879744306 0.9336208 1.0469743 1.0960082 1.1006788
0.5   1.4694023  1.5286340 1.537690250 1.5613117 1.7129587 1.8475697 1.9437977
0.75  2.1745513  2.2075163 2.231534348 2.2481004 2.4082588 2.5054420 2.6591972
0.95  3.1075898  3.0959554 3.057476136 2.9578844 3.0618764 3.1245822 3.3672885
            88        89        90       91       92       93       94       95
x    1.5144782 1.5546772 1.5948762 1.635075 1.675274 1.715473 1.755672 1.795871
0.05 0.3823492 0.8347933 0.9199263 1.020404 1.266325 1.590147 1.667652 1.785647
0.25 1.2379533 1.5859742 1.6662441 1.750063 1.974370 2.270476 2.331200 2.450511
0.5  2.1376688 2.4888034 2.5514714 2.598437 2.815066 3.070853 3.083183 3.142014
0.75 2.8263744 3.1773027 3.2804853 3.376590 3.591073 3.769073 3.763078 3.799006
0.95 3.5412114 3.9730090 4.1259315 4.285650 4.685605 5.197118 5.324819 5.612585
           96       97       98       99      100
x    1.836071 1.876270 1.916469 1.956668 1.996867
0.05 1.784780 1.772409 1.645921 1.616403 1.691950
0.25 2.445582 2.433142 2.313590 2.295370 2.376708
0.5  3.134985 3.130216 3.092351 3.057890 3.149383
0.75 3.798789 3.788421 3.799435 3.741095 3.830514
0.95 5.619304 5.637230 5.793325 5.710625 5.770756

QuantifQuantile documentation built on May 2, 2019, 2:10 a.m.