Description Usage Arguments Details References See Also Examples
This function plots the estimated conditional quantiles by default.
It can also illustrate our data driven selection criterion
for N
by providing the plot of the bootstrap estimated values of
integrated squared error ISE(N) versus N
.
1 2 3 |
x |
An object of class |
col.plot |
Vector of size |
ise |
Whether it plots the ISE curves in addition to the estimated
quantile curves (if |
... |
Arguments to be passed to |
If X
is univariate, the graph is two-dimensional and if
X
is bivariate, it provides a 3D-graph using the rgl
package. When only one value for x
is considered, estimated
conditional quantiles are plotted as points. When x
is a grid of
values, they are plotted as curves if d
=1 and surfaces if d
=2.
When ise=TRUE
, the first plot allows to adapt the choice of the grid for N
,
called testN
. For example, if the curve is decreasing with N
, it
indicates that the values in testN
are too small and the optimal
N
is larger.
Charlier, I. and Paindaveine, D. and Saracco, J., Conditional quantile estimation through optimal quantization, Journal of Statistical Planning and Inference, 2015 (156), 14-30.
Charlier, I. and Paindaveine, D. and Saracco, J., Conditional quantile estimator based on optimal quantization: from theory to practice, Submitted.
QuantifQuantile
, QuantifQuantile.d2
and
QuantifQuantile.d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #for a univariate X
set.seed(644972)
n <- 300
X <- runif(300,-2,2)
Y <- X^2+rnorm(n)
res <- QuantifQuantile(X,Y,testN=seq(10,25,by=5))
plot(res,ise=TRUE)
## Not run:
set.seed(92536)
n <- 300
X <- runif(300,-2,2)
Y <- X^2+rnorm(n)
res <- QuantifQuantile(X,Y,testN=seq(10,25,by=5),x=1)
plot(res,ise=TRUE)
#for a bivariate X
#(a few seconds to execute)
set.seed(253664)
d <- 2
n <- 1000
X<-matrix(runif(d*n,-2,2),nr=d)
Y<-apply(X^2,2,sum)+rnorm(n)
res <- QuantifQuantile.d2(X,Y,testN=seq(80,130,by=10),B=20,tildeB=15)
plot(res,ise=TRUE)
set.seed(193854)
d <- 2
n <- 1000
X<-matrix(runif(d*n,-2,2),nr=d)
Y<-apply(X^2,2,sum)+rnorm(n)
res <- QuantifQuantile.d2(X,Y,testN=seq(110,140,by=10),x=as.matrix(c(1,0)),
B=30,tildeB=20)
plot(res,ise=TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.