Description Usage Arguments Details References See Also Examples
This function plots the estimated conditional quantiles by default.
It can also illustrate our data driven selection criterion
for N by providing the plot of the bootstrap estimated values of
integrated squared error ISE(N) versus N.
1 2 3 |
x |
An object of class |
col.plot |
Vector of size |
ise |
Whether it plots the ISE curves in addition to the estimated
quantile curves (if |
... |
Arguments to be passed to |
If X is univariate, the graph is two-dimensional and if
X is bivariate, it provides a 3D-graph using the rgl
package. When only one value for x is considered, estimated
conditional quantiles are plotted as points. When x is a grid of
values, they are plotted as curves if d=1 and surfaces if d=2.
When ise=TRUE, the first plot allows to adapt the choice of the grid for N,
called testN. For example, if the curve is decreasing with N, it
indicates that the values in testN are too small and the optimal
N is larger.
Charlier, I. and Paindaveine, D. and Saracco, J., Conditional quantile estimation through optimal quantization, Journal of Statistical Planning and Inference, 2015 (156), 14-30.
Charlier, I. and Paindaveine, D. and Saracco, J., Conditional quantile estimator based on optimal quantization: from theory to practice, Submitted.
QuantifQuantile, QuantifQuantile.d2 and
QuantifQuantile.d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #for a univariate X
set.seed(644972)
n <- 300
X <- runif(300,-2,2)
Y <- X^2+rnorm(n)
res <- QuantifQuantile(X,Y,testN=seq(10,25,by=5))
plot(res,ise=TRUE)
## Not run:
set.seed(92536)
n <- 300
X <- runif(300,-2,2)
Y <- X^2+rnorm(n)
res <- QuantifQuantile(X,Y,testN=seq(10,25,by=5),x=1)
plot(res,ise=TRUE)
#for a bivariate X
#(a few seconds to execute)
set.seed(253664)
d <- 2
n <- 1000
X<-matrix(runif(d*n,-2,2),nr=d)
Y<-apply(X^2,2,sum)+rnorm(n)
res <- QuantifQuantile.d2(X,Y,testN=seq(80,130,by=10),B=20,tildeB=15)
plot(res,ise=TRUE)
set.seed(193854)
d <- 2
n <- 1000
X<-matrix(runif(d*n,-2,2),nr=d)
Y<-apply(X^2,2,sum)+rnorm(n)
res <- QuantifQuantile.d2(X,Y,testN=seq(110,140,by=10),x=as.matrix(c(1,0)),
B=30,tildeB=20)
plot(res,ise=TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.