Nothing
#'
#'
#' @importFrom glmnet glmnet
#' @importFrom Matrix drop0
#' @importFrom stats coef predict
#'
get.MLRlasso <- function(alpha.P, Y.i) {
options(warn = -1)
fit <- glmnet(alpha.P, Y.i, family = "binomial", alpha = 1, nlambda = 50)
options(warn = 0)
lin.preds <- predict(fit, newx = alpha.P, type = "link", s = fit$lambda)
predicted.probs <- 1 / (1 + exp(-lin.preds))
Yi.matrix <- matrix(Y.i, nrow=length(Y.i), ncol=length(fit$lambda), byrow = FALSE)
loglik <- colSums(Yi.matrix * log(predicted.probs) + (1 - Yi.matrix) * log(1 - predicted.probs))
temp <- coef(fit) != 0
k <- colSums(matrix(as.numeric(temp), nrow = nrow(temp), byrow = FALSE))
bic.values <- -2 * loglik + log(length(Y.i)) * k
best.coefs <- drop0(coef(fit, s = fit$lambda[which.min(bic.values)]))[-1, ]
return(as.vector(best.coefs))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.