Nothing
## ---- message=FALSE, warning=FALSE--------------------------------------------
library(R2ucare)
## ---- message=FALSE, warning=FALSE--------------------------------------------
# # read in text file as described at pages 50-51 in http://www.phidot.org/software/mark/docs/book/pdf/app_3.pdf
dipper <- system.file("extdata", "dipper.txt", package = "RMark")
dipper <- RMark::import.chdata(dipper, field.names = c("ch", "sex"), header = FALSE)
dipper <- as.data.frame(table(dipper))
str(dipper)
## ---- message=FALSE, warning=FALSE--------------------------------------------
dip.hist <- matrix(as.numeric(unlist(strsplit(as.character(dipper$ch),""))),
nrow = length(dipper$ch),
byrow = T)
dip.freq <- dipper$Freq
dip.group <- dipper$sex
head(dip.hist)
head(dip.freq)
head(dip.group)
## ---- message=FALSE, warning=FALSE--------------------------------------------
dipper <- system.file("extdata", "ed.txt", package = "R2ucare")
dipper <- read_headed(dipper)
## ---- message=FALSE, warning=FALSE--------------------------------------------
dip.hist <- dipper$encounter_histories
dip.freq <- dipper$sample_size
dip.group <- dipper$groups
head(dip.hist)
head(dip.freq)
head(dip.group)
## ---- message=FALSE, warning=FALSE--------------------------------------------
dipper <- system.file("extdata", "ed.inp", package = "R2ucare")
dipper <- read_inp(dipper, group.df = data.frame(sex = c("Male", "Female")))
## ---- message=FALSE, warning=FALSE--------------------------------------------
dip.hist <- dipper$encounter_histories
dip.freq <- dipper$sample_size
dip.group <- dipper$groups
head(dip.hist)
head(dip.freq)
head(dip.group)
## ---- message=FALSE, warning=FALSE--------------------------------------------
mask <- (dip.group == "Female")
dip.fem.hist <- dip.hist[mask,]
dip.fem.freq <- dip.freq[mask]
mask <- (dip.group == "Male")
dip.mal.hist <- dip.hist[mask,]
dip.mal.freq <- dip.freq[mask]
## ---- message=FALSE, warning=FALSE--------------------------------------------
test3sr_females <- test3sr(dip.fem.hist, dip.fem.freq)
test3sm_females <- test3sm(dip.fem.hist, dip.fem.freq)
test2ct_females <- test2ct(dip.fem.hist, dip.fem.freq)
test2cl_females <- test2cl(dip.fem.hist, dip.fem.freq)
# display results:
test3sr_females
test3sm_females
test2ct_females
test2cl_females
## ---- message=FALSE, warning=FALSE--------------------------------------------
overall_CJS(dip.fem.hist, dip.fem.freq)
## -----------------------------------------------------------------------------
overall_test <- overall_CJS(dip.fem.hist, dip.fem.freq) # overall test
twoct_test <- test2ct(dip.fem.hist, dip.fem.freq) # test for trap-dependence
stat_tp <- overall_test$chi2 - twoct_test$test2ct["stat"] # overall stat - 2CT stat
df_tp <- overall_test$degree_of_freedom - twoct_test$test2ct["df"] # overall dof - 2CT dof
pvalue <- 1 - pchisq(stat_tp, df_tp) # compute p-value for null hypothesis:
# model with trap-dep fits the data well
pvalue
## ---- message=FALSE, warning=FALSE--------------------------------------------
geese <- system.file("extdata", "geese.inp", package = "R2ucare")
geese <- read_inp(geese)
## ---- message=FALSE, warning=FALSE--------------------------------------------
geese.hist <- geese$encounter_histories
geese.freq <- geese$sample_size
## ---- message=FALSE, warning=FALSE--------------------------------------------
test3Gsr(geese.hist, geese.freq)
test3Gsm(geese.hist, geese.freq)
test3Gwbwa(geese.hist, geese.freq)
testMitec(geese.hist, geese.freq)
testMltec(geese.hist, geese.freq)
## ---- message=FALSE, warning=FALSE--------------------------------------------
overall_JMV(geese.hist, geese.freq)
## ---- message=FALSE, warning=FALSE--------------------------------------------
# Assuming the geese dataset has been read in R (see above):
geese.hist[geese.hist > 1] <- 1
## ---- message=FALSE, warning=FALSE--------------------------------------------
# Assuming the geese dataset has been read in R (see above):
geese.hist[geese.hist == 3] <- 2 # all 3s become 2s
## ---- message=FALSE, warning=FALSE,eval=FALSE---------------------------------
# # Assuming the female dipper dataset has been read in R (see above):
# t(apply(dip.fem.hist, 1, rev))
## ---- message=FALSE, warning=FALSE,eval=FALSE---------------------------------
# # Assuming the female dipper dataset has been read in R (see above):
# mask = (apply(dip.fem.hist, 1, sum) > 0 & dip.fem.freq > 0) # select non-empty histories, and histories with at least one individual
# sum(!mask) # how many histories are to be dropped?
# dip.fem.hist[mask,] # drop these histories from dataset
# dip.fem.freq[mask] # from counts
## ---- message=FALSE, warning=FALSE, eval=FALSE--------------------------------
# # Assuming the female dipper dataset has been read in R (see above):
# dip.fem.hist[, c(1,4,6)] # pick occasions 1, 4 and 6 (might be a good idea to clean the resulting dataset)
# gather_146 <- apply(dip.fem.hist[,c(1,4,6)], 1, max) # gather occasions 1, 4 and 6 by taking the max
# dip.fem.hist[,1] <- gather_146 # replace occasion 1 by new occasion
# dip.fem.hist <- dip.fem.hist[, -c(4,6)] # drop occasions 4 and 6
## ---- message=FALSE, warning=FALSE, eval=FALSE--------------------------------
# # Assuming the geese dataset has been read in R (see above):
# for (i in 1:nrow(geese.hist)){
# occasion_first_encounter <- min(which(geese.hist[i,] != 0)) # look for occasion of first encounter
# geese.hist[i, occasion_first_encounter] <- 0 # replace the first non zero by a zero
# }
# # delete empty histories from the new dataset
# mask <- (apply(geese.hist, 1, sum) > 0) # select non-empty histories
# sum(!mask) # how many histories are to be dropped?
# geese.hist[mask,] # drop these histories from dataset
# geese.freq[mask] # from counts
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.