Writes query results from a
SELECTstatement to the specified data format. Supported formats forUNLOADincludeApache Parquet,ORC,Apache Avro, andJSON.CSVis the only output format used by theAthenaSELECTquery, but you can useUNLOADto write the output of aSELECTquery to the formats thatUNLOADsupports.Although you can use the
CTASstatement to output data in formats other thanCSV, those statements also require the creation of a table in Athena. TheUNLOADstatement is useful when you want to output the results of aSELECTquery in anon-CSVformat but do not require the associated table. For example, a downstream application might require the results of aSELECTquery to be inJSONformat, andParquetorORCmight provide a performance advantage overCSVif you intend to use the results of theSELECTquery for additional analysis.(https://docs.aws.amazon.com/athena/latest/ug/unload.html)
RAthena v-2.2.0.9000+ can now leverage this functionality with the unload parameter within dbGetQuery, dbSendQuery, dbExecute. This functionality offers faster performance for mid to large result sizes.
unload=FALSE (Default)Regular query on AWS Athena and then reads the table data as CSV directly from AWS S3.
PROS:
CONS:
unload=TRUEWraps the query with a UNLOAD and then reads the table data as parquet directly from AWS S3.
PROS:
CONS:
order by due to multiple parquet files being produced by AWS Athena.Set up AWS Athena table (example taken from AWS Data Wrangler: Amazon Athena Tutorial):
# Python import awswrangler as wr import getpass bucket = getpass.getpass() path = f"s3://{bucket}/data/" if "awswrangler_test" not in wr.catalog.databases().values: wr.catalog.create_database("awswrangler_test") cols = ["id", "dt", "element", "value", "m_flag", "q_flag", "s_flag", "obs_time"] df = wr.s3.read_csv( path="s3://noaa-ghcn-pds/csv/189", names=cols, parse_dates=["dt", "obs_time"]) # Read 10 files from the 1890 decade (~1GB) wr.s3.to_parquet( df=df, path=path, dataset=True, mode="overwrite", database="awswrangler_test", table="noaa" ); wr.catalog.table(database="awswrangler_test", table="noaa")
Benchmark unload method using RAthena.
# R library(DBI) con <- dbConnect(RAthena::athena()) dbGetQuery(con, "select count(*) as n from awswrangler_test.noaa") # Info: (Data scanned: 0 Bytes) # n # 1: 29554197 # Query ran using CSV output system.time({ df = dbGetQuery(con, "SELECT * FROM awswrangler_test.noaa") }) # Info: (Data scanned: 80.88 MB) # user system elapsed # 57.004 8.430 160.567 dim(df) # [1] 29554197 8 RAthena::RAthena_options(cache_size = 1) # Query ran using UNLOAD Parquet output system.time({ df = dbGetQuery(con, "SELECT * FROM awswrangler_test.noaa", unload = T) }) # Info: (Data scanned: 80.88 MB) # user system elapsed # 21.622 2.350 39.232 dim(df) # [1] 29554197 8 # Query ran using cached UNLOAD Parquet output system.time({ df = dbGetQuery(con, "SELECT * FROM awswrangler_test.noaa", unload = T) }) # Info: (Data scanned: 80.88 MB) # user system elapsed # 16.515 2.602 12.670 dim(df) # [1] 29554197 8
Method|Time (seconds)
----|----
unload=FAlSE|160.567
unload=TRUE|39.232
Cache unload=TRUE|12.670
From this simple benchmark test there is a significant improvement in the performance when querying AWS Athena while unload=TRUE.
Note: Benchmark ran on AWS Sagemaker ml.t3.xlarge instance.
unload = TRUE on package level:Another method to set unload=TRUE is to use RAthena_options(). By setting RAthena_options(unload=TRUE), unload is set to TRUE package level and all DBI functionality will use it when applicable.
library(DBI) library(RAthena) con <- dbConnect(athena()) RAthena_options(unload = TRUE) dbi_noaa = dbGetQuery(con, "select * from awswrangler_test.noaa") ```` This also give benefits for when using `dplyr` functionality. When setting `RAthena_options(unload=TRUE)` all `dplyr` lazy evaluation will start using `AWS Athena unload`. ```r tbl_noaa = tbl(con, dbplyr::in_schema("awswrangler_test", "noaa")) tbl_noaa %>% collect() #> # A tibble: 29,554,197 x 8 #> id dt element value m_flag q_flag s_flag obs_time #> <chr> <dttm> <chr> <int> <chr> <chr> <chr> <chr> #> 1 ASN00074198 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 2 ASN00074222 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 3 ASN00074227 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 4 ASN00075001 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 5 ASN00075005 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 6 ASN00075006 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 7 ASN00075011 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 8 ASN00075013 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 9 ASN00075014 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> 10 ASN00075018 1890-01-05 00:00:00 PRCP 0 NA NA a NA #> # ... with 29,554,187 more rows noaa %>% filter(element == "PRCP") %>% collect() #> # A tibble: 15,081,580 x 8 #> id dt element value m_flag q_flag s_flag obs_time #> <chr> <dttm> <chr> <int> <chr> <chr> <chr> <chr> #> 1 SWE00140492 1890-01-06 00:00:00 PRCP 0 NA NA E NA #> 2 SWE00140594 1890-01-06 00:00:00 PRCP 4 NA NA E NA #> 3 SWE00140746 1890-01-06 00:00:00 PRCP 0 NA NA E NA #> 4 SWE00140828 1890-01-06 00:00:00 PRCP 0 NA NA E NA #> 5 SWM00002080 1890-01-06 00:00:00 PRCP 0 NA NA E NA #> 6 SWM00002485 1890-01-06 00:00:00 PRCP 1 NA NA E NA #> 7 SWM00002584 1890-01-06 00:00:00 PRCP 0 NA NA E NA #> 8 TSE00147769 1890-01-06 00:00:00 PRCP 33 NA NA E NA #> 9 TSE00147775 1890-01-06 00:00:00 PRCP 150 NA NA E NA #> 10 UK000047811 1890-01-06 00:00:00 PRCP 49 NA NA E NA #> # ... with 15,081,570 more rows
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.