Nothing
set.seed(1)
data("Russett")
blocks <- list(
agriculture = Russett[, seq(3)],
industry = Russett[, 4:5],
politic = Russett[, 6:8]
)
blocks_classif <- list(
agriculture = Russett[, 1:3],
industry = Russett[, 4:5],
politic = matrix(Russett[, 11], ncol = 1)
)
blocks_classif[["politic"]][blocks_classif[["politic"]][, 1] == 1, ] <- "demo"
blocks_classif[["politic"]][blocks_classif[["politic"]][, 1] == 0, ] <- "ndemo"
RussettWithNA <- Russett
RussettWithNA[1:2, 1:3] <- NA
RussettWithNA[3, 4:5] <- NA
RussettWithNA[3, 1] <- NA
blocksNA <- list(
agriculture = RussettWithNA[, seq(3)],
industry = RussettWithNA[, 4:5],
politic = RussettWithNA[, 6:8]
)
blocks_null_sd <- list(
agriculture = Russett[, seq(3)],
industry = Russett[, 4:5],
politic = Russett[, 6:11]
)
blocks_null_sd[[3]][, 6] <- c(1, rep(0, 46))
custom_rgcca_cv_k <- function(blocks, response, prediction_model = "lm", ...) {
# Step 1: extract line 1 of each block
A_minus_1 <- lapply(blocks, function(x) {
return(x[-1, ])
})
A_1 <- lapply(blocks, function(x) {
return(x[1, ])
})
# Step 2: Fit RGCCA on block A_minus_1
rgcca_out_1 <- rgcca(A_minus_1, response = response, ...)
# Step 3: Evaluate model on A_1
pred_1 <- rgcca_predict(rgcca_out_1, A_1,
prediction_model = prediction_model
)
return(pred_1$score)
}
test_that("rgcca_cv_k gives the same scores as custom_rgcca_cv_k", {
# Regression
response <- 1
rgcca_out <- rgcca(blocks, response = response, ncomp = 1)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lm",
par_type = "tau", par_value = rep(1, length(blocks)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(blocks, response)
expect_equal(res_cv_k, res_custom_cv_k)
rgcca_out <- rgcca(blocks, response = response, ncomp = 2)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lm",
par_type = "tau", par_value = rep(1, length(blocks)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(blocks, response, ncomp = 2)
expect_equal(res_cv_k, res_custom_cv_k)
# Classification
response <- 3
rgcca_out <- rgcca(blocks_classif, response = response, ncomp = 1)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lda",
par_type = "tau", par_value = rep(1, length(blocks_classif)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(blocks_classif, response, "lda")
expect_equal(res_cv_k, res_custom_cv_k)
rgcca_out <- rgcca(blocks_classif, response = response, ncomp = 2)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lda",
par_type = "tau", par_value = rep(1, length(blocks_classif)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(blocks_classif, response, "lda",
ncomp = 2
)
expect_equal(res_cv_k, res_custom_cv_k)
# With missing values
response <- 1
rgcca_out <- rgcca(blocksNA,
response = response, ncomp = 1,
NA_method = "na.ignore"
)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lm",
par_type = "tau", par_value = rep(1, length(blocksNA)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(
blocksNA, response, NA_method = "na.ignore"
)
expect_equal(res_cv_k, res_custom_cv_k)
rgcca_out <- rgcca(blocksNA,
response = response, ncomp = 1,
NA_method = "na.omit"
)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lm",
par_type = "tau", par_value = rep(1, length(blocksNA)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(blocksNA, response,
NA_method = "na.omit"
)
expect_equal(res_cv_k, res_custom_cv_k)
# With a column of null variance in the training set
response <- 1
rgcca_out <- rgcca(blocks_null_sd, response = response, ncomp = 1)
res_cv_k <- rgcca_cv_k(
rgcca_out$call, inds = 1, prediction_model = "lm",
par_type = "tau", par_value = rep(1, length(blocks_null_sd)),
metric = NULL
)
res_custom_cv_k <- custom_rgcca_cv_k(blocks_null_sd, response)
expect_equal(res_cv_k, res_custom_cv_k)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.