Nothing
decomp_defTS <- function(jrobj,spec){
# extract model specification from the java object
rspec <- specSeats_jd2r( spec = spec)
specification <- do.call(data.frame, rspec)
names(specification) <- paste0("seats.",names(specification))
rownames(specification) <- ""
# results
jd_results <- decomp_rsltsTS(jrobj)
# new S3 class ("Decomp","TRAMO_SEATS")
z <- list(specification = specification,
mode = jd_results$mode,
model = jd_results$model,
linearized = jd_results$lin,
components = jd_results$cmp)
class(z) <- c("decomposition_SEATS")
return(z)
}
decomp_TS <- function(jrobj, spec){
# specification
specification <- spec[3,]
rownames(specification) <- ""
# results
jd_results <- decomp_rsltsTS(jrobj)
# new S3 class ("Decomp","TRAMO_SEATS")
z <- list(specification = specification,
mode = jd_results$mode,
model = jd_results$model,
linearized = jd_results$lin,
components = jd_results$cmp)
class(z) <- c("decomposition_SEATS")
return(z)
}
decomp_defX13 <- function(jrobj, spec, freq = NA){
# extract model specification from the java object
specification <- specX11_jd2r(spec = spec, freq = freq)
rownames(specification) <- ""
# results
jd_results <- decomp_rsltsX13(jrobj)
# new S3 class ("Decomp","X13")
z <- list(specification = specification,
mode = jd_results$mode,
mstats = jd_results$mstats,
si_ratio = jd_results$si_ratio,
s_filter = jd_results$s_filter,
t_filter = jd_results$t_filter)
class(z) <- c("decomposition_X11")
return(z)
}
decomp_X13 <- function(jrobj,spec,seasma){
# specification
specification <- spec[3,]
specification[[7]] <- seasma
rownames(specification) <- ""
# results
jd_results <- decomp_rsltsX13(jrobj)
# new S3 class ("Decomp","X13")
z <- list(specification = specification,
mode = jd_results$mode,
mstats = jd_results$mstats,
si_ratio = jd_results$si_ratio,
s_filter = jd_results$s_filter,
t_filter = jd_results$t_filter)
class(z) <- c("decomposition_X11")
return(z)
}
decomp_rsltsX13 <- function(jrobj){
mode <- result(jrobj,"mode")
mstats_rownames <- c(sprintf("M(%s)", 1:11),
"Q", "Q-M2")
mstats_names <- sprintf("mstats.%s", mstats_rownames)
mstats <- lapply(mstats_names,
function(diag) {
result(jrobj, diag)})
mstats <- matrix(unlist(mstats), ncol = 1)
rownames(mstats) <- mstats_rownames
colnames(mstats) <- c("M stats")
d8 <- result(jrobj,"decomposition.d8")
d10 <- result(jrobj,"decomposition.d10")
si_ratio <- cbind(d8 = d8, d10 = d10)
s_filter <- result(jrobj,"decomposition.d9filter")
t_filter <- result(jrobj,"decomposition.d12filter")
z <- list(mode = mode, mstats = mstats, si_ratio = si_ratio,
s_filter = s_filter, t_filter = t_filter)
return(z)
}
decomp_rsltsTS <- function(jrobj){
mode <- result(jrobj,"mode")
lin_colnames <- sprintf("%s_lin", c("y","sa","t","s","i"))
cmp_colnames <- sprintf("%s_cmp", c("y","sa","t","s","i"))
lin_names <- sprintf("decomposition.%s", lin_colnames)
cmp_names <- sprintf("decomposition.%s", cmp_colnames)
lin <- lapply(lin_names,
function(diag) {
res <- result(jrobj,diag)
if (is.null(res)) {
NA
}else{
res
}
})
lin <- do.call(cbind, lin)
colnames(lin) <- lin_colnames
cmp <- lapply(cmp_names,
function(diag) {
res <- result(jrobj,diag)
if (is.null(res)) {
NA
}else{
res
}
})
cmp <- do.call(cbind, cmp)
colnames(cmp) <- cmp_colnames
fmodel_names <- paste0("decomposition.model.",c("ar","diff","ma","innovationvariance"))
samodel_names <- paste0("decomposition.samodel.",c("ar","diff","ma","innovationvariance"))
tmodel_names <- paste0("decomposition.tmodel.",c("ar","diff","ma","innovationvariance"))
smodel_names <- paste0("decomposition.smodel.",c("ar","diff","ma","innovationvariance"))
trans_model_names <- paste0("decomposition.transitorymodel.",c("ar","diff","ma","innovationvariance"))
imodel_names <- paste0("decomposition.imodel.",c("ar","diff","ma","innovationvariance"))
rdsc <- c("AR","D","MA","Innovation variance")
fmodel <- lapply(fmodel_names,
function(diag) {
res <- result(jrobj,diag)})
if (!all(sapply(fmodel, is.null))) {
n <- max(length(fmodel[[1]]),length(fmodel[[2]]), length(fmodel[[3]]), length(fmodel[[4]]))
for (i in 1:4) {length(fmodel[[i]]) <- n}
fmodel <- do.call(rbind, fmodel)
rownames(fmodel) <- rdsc
colnames(fmodel) <- as.character(c(0:(dim(fmodel)[2] - 1)))
}
samodel <- lapply(samodel_names,
function(diag) {
res <- result(jrobj,diag)})
if (!all(sapply(samodel, is.null))) {
n <- max(length(samodel[[1]]),length(samodel[[2]]), length(samodel[[3]]), length(samodel[[4]]))
for (i in 1:4) {length(samodel[[i]]) <- n}
samodel <- do.call(rbind, samodel)
rownames(samodel) <- rdsc
colnames(samodel) <- as.character(c(0:(dim(samodel)[2] - 1)))
}
tmodel <- lapply(tmodel_names,
function(diag) {
res <- result(jrobj,diag)})
if (!all(sapply(tmodel, is.null))) {
n <- max(length(tmodel[[1]]),length(tmodel[[2]]), length(tmodel[[3]]), length(tmodel[[4]]))
for (i in 1:4) {length(tmodel[[i]]) <- n}
tmodel <- do.call(rbind, tmodel)
rownames(tmodel) <- rdsc
colnames(tmodel) <- as.character(c(0:(dim(tmodel)[2] - 1)))
}
smodel <- lapply(smodel_names,
function(diag) {
res <- result(jrobj,diag)})
if (!all(sapply(smodel, is.null))) {
n <- max(length(smodel[[1]]),length(smodel[[2]]), length(smodel[[3]]), length(smodel[[4]]))
for (i in 1:4) {length(smodel[[i]]) <- n}
smodel <- do.call(rbind, smodel)
rownames(smodel) <- rdsc
colnames(smodel) <- as.character(c(0:(dim(smodel)[2] - 1)))
}
trans_model <- lapply(trans_model_names,
function(diag) {
res <- result(jrobj,diag)})
if (!all(sapply(trans_model, is.null))) {
n <- max(length(trans_model[[1]]),length(trans_model[[2]]), length(trans_model[[3]]), length(trans_model[[4]]))
for (i in 1:4) {length(trans_model[[i]]) <- n}
trans_model <- do.call(rbind, trans_model)
rownames(trans_model) <- rdsc
colnames(trans_model) <- as.character(c(0:(dim(trans_model)[2] - 1)))
}
imodel <- lapply(imodel_names,
function(diag) {
res <- result(jrobj,diag)})
if (!all(sapply(imodel, is.null))) {
n <- max(length(imodel[[1]]),length(imodel[[2]]), length(imodel[[3]]), length(imodel[[4]]))
for (i in 1:4) {length(imodel[[i]]) <- n}
imodel <- do.call(rbind, imodel)
rownames(imodel) <- rdsc
colnames(imodel) <- as.character(c(0:(dim(imodel)[2] - 1)))
}
model <- list(model = fmodel, sa = samodel, trend = tmodel, seasonal = smodel,
transitory = trans_model, irregular = imodel)
z <- list(mode = mode, lin = lin, cmp = cmp, model = model)
return(z)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.