Nothing
#' @title Run Monte-Carlo Simulation for CW-OSL (delocalized transitions)
#'
#' @description Runs a Monte-Carlo (MC) simulation of continuous wave optically stimulated luminescence
#' (CW-OSL) using the one trap one recombination centre (OTOR) model.
#' The term delocalized here refers to the involvement of the conduction band.
#'
#' @details
#'
#' **The model**
#'
#' \deqn{
#' I_{DELOC}(t) = -dn/dt = A * (n^2 / (N*R + n(1-R)))
#' }
#'
#' Where in the function: \cr
#' t := time (s) \cr
#' A := the optical excitation rate from trap to conduction band (1/s)\cr
#' n := `n_filled`, the instantaneous number of electrons \cr
#' N := `N_e` the available number of electron traps available \cr
#' R := retrapping ratio for delocalized transitions
#'
#' @param A [numeric] (**required**): The optical excitation rate from trap to conduction band (s^-1)
#'
#' @param times [numeric] (**required**): The sequence of temperature steps within the simulation (s)
#'
#' @param clusters [numeric] (*with default*): The number of created clusters for the MC runs. The input can be the output of [create_ClusterSystem]. In that case `n_filled` indicate absolute numbers of a system.
#'
#' @param N_e [integer] (*with default*): The total number of electron traps available (dimensionless). Can be a vector of `length(clusters)`, shorter values are recycled.
#'
#' @param n_filled [integer] (*with default*): The number of filled electron traps at the beginning
#' of the simulation (dimensionless). Can be a vector of `length(clusters)`, shorter values are recycled.
#'
#' @param R [numeric] (**required**): The retrapping ratio for delocalized transitions (dimensionless)
#'
#' @param method [character] (*with default*): Sequential `'seq'` or parallel `'par'`processing. In
#' the parallel mode the function tries to run the simulation on multiple CPU cores (if available) with
#' a positive effect on the computation time.
#'
#' @param output [character] (*with default*): Output is either the `'signal'` (the default) or
#' `'remaining_e'` (the remaining charges, electrons, in the trap)
#'
#' @param \dots further arguments, such as `cores` to control the number of used CPU cores or `verbose` to silence the terminal
#'
#' @return This function returns an object of class `RLumCarlo_Model_Output` which
#' is a [list] consisting of an [array] with dimension length(times) x clusters
#' and a [numeric] time vector.
#'
#' @section Function version: 0.1.0
#'
#' @author Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)
#'
#' @references
#' Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S.,
#' Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random
#' distribution of defects: A new Monte Carlo simulation approach for feldspar.
#' Journal of Luminescence 207, 266–272. \doi{10.1016/j.jlumin.2018.11.024}
#'
#' **Further reading**
#'
#' Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena.
#' WORLD SCIENTIFIC. \doi{10.1142/2781}
#'
#' @examples
#' ## brief example
#' run_MC_CW_OSL_DELOC(
#' A = 0.12,
#' R = 0.1,
#' times = 0:10,
#' clusters = 10,
#' method = "seq") %>%
#' plot_RLumCarlo(legend = TRUE)
#'
#' ## A long example
#' \dontrun{
#' A <- c(0.1,0.3,0.5,1)
#' times <- seq(0, 60, 1)
#' s <- 1e12
#' E <- 1
#' R <- c(1e-7, 1e-6, 0.01, 0.1) # sequence of different R values
#' clusters <- 1000 # number of Monte Carlo simulations
#' N_e <- c(200, 500, 700, 400) # number of free electrons
#' n_filled <- c(200, 500, 100, 70) # number of filled traps
#' method <-"par"
#' output <- "signal"
#' col <- c(1,2,3,4) # ifferent colours for the individual curves
#' plot_uncertainty <- c(TRUE,FALSE,TRUE,FALSE) # do you want to see the uncertainty?
#' add_TF <- c(FALSE,rep(TRUE, (length(R)-1)))
#'
#' ## loop to plot different curves into one plot
#' for (u in 1:length(R)){
#' results <- run_MC_CW_OSL_DELOC(
#' A = A[u],
#' times,
#' clusters = clusters,
#' N_e = N_e[u],
#' n_filled = n_filled[u],
#' R = R[u],
#' method = method,
#' output = output)
#'
#' plot_RLumCarlo(
#' results,
#' add = add_TF[u],
#' legend = FALSE,
#' col = col[u],
#' main = "Delocalised Transition")
#' }
#' # add your legend with your parameters
#' legend("topright",
#' ncol = 4,
#' cex = 0.55,
#' title = "parameters",
#' legend=c(
#' paste0("A = ", A),
#' paste0("n_filled = ", n_filled),
#' paste0("N_e = ", N_e),
#' paste0("R = ", R)),
#' bty = "n",
#' text.col = col)
#'}
#'
#' @keywords models data
#' @encoding UTF-8
#' @md
#' @export
run_MC_CW_OSL_DELOC <- function(
A,
times,
clusters = 10,
N_e = 200,
n_filled = N_e,
R,
method = "par",
output = "signal",
...){
# Integrity checks ----------------------------------------------------------------------------
if(!output %in% c("signal", "remaining_e"))
stop("[run_MC_CW_OSL_DELOC()] Allowed keywords for 'output' are either 'signal' or 'remaining_e'!", call. = FALSE)
# Register multi-core back end --------------------------------------------
cl <- .registerClusters(method, ...)
on.exit(parallel::stopCluster(cl))
# Enable dosimetric cluster system -----------------------------------------
if(class(clusters)[1] == "RLumCarlo_ClusterSystem"){
n_filled <- .distribute_electrons(
clusters = clusters,
N_system = n_filled[1])[["e_in_cluster"]]
clusters <- clusters$cl_groups
}
# Expand parameters -------------------------------------------------------
n_filled <- rep(n_filled, length.out = max(clusters))
N_e <- rep(N_e, length.out = max(clusters))
# Run model ---------------------------------------------------------------
temp <- foreach(c = 1:max(clusters),
.packages = 'RLumCarlo',
.combine = 'comb_array',
.multicombine = TRUE) %dopar% {
results <- MC_C_CW_OSL_DELOC(
times = times,
N_e = N_e[c],
n_filled = n_filled[c],
R = R[1],
A = A[1])
return(results[[output]])
} # end c++-loop
# Return --------------------------------------------------------------------------------------
.return_ModelOutput(signal = temp, time = times)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.