Nothing
#' Apply CILOS Weighting Method
#'
#' @param mat A numeric matrix representing decision criteria values.
#' @param beneficial.vector A numeric vector indicating the column indices of beneficial criteria.
#'
#' @return A numeric vector of calculated weights.
#'
#' @examples
#'
#' mat <- matrix(
#' c(75.5, 95, 770, 187, 179, 239, 237,
#' 420, 91, 1365, 1120, 875, 1190, 200,
#' 74.2, 70, 189, 210, 112, 217, 112,
#' 2.8, 2.68, 7.9, 7.9, 4.43, 8.51, 8.53,
#' 21.4, 22.1, 16.9, 14.4, 9.4, 11.5, 19.9,
#' 0.37, 0.33, 0.04, 0.03, 0.016, 0.31, 0.29,
#' 0.16, 0.16, 0.08, 0.08, 0.09, 0.07, 0.06),
#' nrow = 7, byrow = TRUE
#' )
#' beneficial.vector <- c(1, 2, 3, 6, 7)
#' apply.CILOS(mat, beneficial.vector)
#' @importFrom pracma nullspace
#' @export apply.CILOS
apply.CILOS <- function(mat, beneficial.vector) {
normalize.criteria <- function(mat, beneficial.vector = NULL) {
norm.mat <- mat
if (!is.null(beneficial.vector)) {
for (j in seq_len(ncol(mat))) {
if (!(j %in% beneficial.vector)) {
norm.mat[, j] <- min(mat[, j]) / mat[, j]
}
}
}
return(norm.mat)
}
sum.normalize <- function(mat) {
return(t(t(mat) / colSums(mat)))
}
nmat <- normalize.criteria(mat, beneficial.vector)
nmat <- sum.normalize(nmat)
selected.max <- nmat[apply(nmat, 2, which.max), ]
diag.max <- diag(selected.max)
preference.mat <- t(t(t((diag.max) - t(selected.max))) / diag.max)
influence.mat <- preference.mat - diag(colSums(preference.mat))
null.vector <- nullspace(influence.mat)
final.weights <- (null.vector / sum(null.vector))[,1]
return(final.weights)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.